Session III: New ETSI Model on Wideband Speech and Noise Transmission Quality – Phase I

IP transmission simulation

ETSI Workshop on Speech and Noise in Wideband Communication

Isabel Ordás
(Telefónica I+D)
© ETSI 2007. All rights reserved
Index

- Performance parameters
 - Delay, jitter, packet loss
 - Parameter interaction and dependences

- Wideband codecs
 - Overview
 - G.722
 - AMR-WB

- Background noise transmission simulation
 - Steps
 - Step 1: Speech sequences
 - Step 2: Noisy conditions
 - Step 3: Noisy signal processing
 - Step 4: Network simulation

- Database description
 - Speech samples with background noise
 - Noise reduction, coding and network transmission conditions
World Class Standards

Performance parameters
Delay, jitter, packet loss

Lots of conditions and parameters that can influence on speech quality

- **Delay**: amount of time it takes for a signal to reach a destination
 - Very direct impact on user satisfaction
 - ITU: <150ms (preferred); 400 ms (limit)
 - Codec delay + packetization delay + output queuing delay + serialization delay + network delay + network switching delay + propagation delay + de-jitter delay

- **Jitter**: variation of delay
 - Services intolerant of delay variation take solutions to reduce it by means of buffering (de-jitter buffers) increases delay
 - ITU: <1ms (audio applications after de-jitter buffer); <30 ms (no buffer)

- **Packet loss**: percentage of data packets which are lost
 - Very direct effect
 - ITU: < 3% (audio applications)
Performance parameters
Parameter interaction and dependences

- These parameters are not independent one another
Wideband codecs
Overview

- Wider band of frequency (50 Hz to 7000 Hz) compared to traditional Narrowband speech (200 Hz to 3400 Hz)
- Increase intelligibility and naturalness of speech
 - 50 Hz – 200 Hz: increased naturalness, presence and comfort
 - 3400 Hz – 7000 Hz: fricative differentiation and higher intelligibility
- Digitalised at 16 kHz
 - 16-bit integer → 256 kbps
- Speech compression becomes of significant importance
World Class Standards

Wideband codecs
G.722

- ITU-T Recommendation
- SB-ADPCM (Sub Band – Adaptive Differential Pulse Code Modulation)
- 3 modes of operation: 64 kbps; 56 kbps (auxiliary data channel 8kbps) and 48 kbps (auxiliary data channel 16 kbps)
- Encoder
World Class Standards

Wideband codecs
AMR-WB

- 3GPP /ETSI
- Recommendation G.722.2 ITU-T
- ACELP (Algebraic Code Excited Linear Prediction Coder)
- Adaptive codec capable of operating at 9 modes of operation: 6.6 kbps, 8.85 kbps, 12.65 kbps, 14.25 kbps, 15.85 kbps, 18.25 kbps, 19.85 kbps, 23.05 kbps and 23.85 kbps

- Encoder

* 3 bits, indicating whether information bits are available and if they are speech or SID information
World Class Standards

Background noise transmission simulation
Steps

1. Clean speech sequences recording
 - Noise-free speech samples (8 samples)

2. Noisy conditions adding
 - Speech samples with background noise conditions (80 samples)

3. Wideband terminal simulation
 - Speech samples with noise and terminal conditions (720 samples)

4. Network simulation
 - Speech sample database (4320 samples)

Database of noise type/wideband terminal/network impairment combinations
World Class Standards

Background noise transmission simulation
Step 1: Speech sequences

- Recording a representative number of speech sequences without background noise

- Conditions
 - 48 kHz (16 bit) sampling rate
 - Wave format
 - Active speech level equalized to -26 dBov

- Number of samples
 - 4 speakers (2 male, 2 female), 8 sentences each
 - 2 languages: Czech, French
 - Length of recordings between 24s and 73s
 - Neutral sentences of 2s to 3s separated by pauses
 - Speech activity factor between 30% and 60%
Background noise transmission simulation
Step 2: Noisy conditions

- Different background noises need to be recorded for each speech file
 - Cafeteria noise
 - Office room noise
 - Road noise
 - Crossroads
 - Car noise (car hands-free at 130 km/h)

- Two microphone-loudspeaker positions
 - Typical handset microphone position (with loudness ratings adjusted to 7dB)
 - Hands-free microphone position (with loudness ratings adjusted to 11dB)
Background noise transmission simulation
Step 3: Noisy signal processing

- The noisy signal must be processed to take into account the influence of the terminal
 - Convolution with impulse response of WideBand (WB) terminals
 - Application of WideBand (WB) Noise-Suppression Algorithm (NSA)

- Signal processing implemented for STF 294
 - Signal speech+noise down-sampled (from 48 kHz to 16kHz) and filtered out using band-pass filters
 - Noise reduction algorithms with the following parameters
 - Parameter 1: with/without noise estimation using VAD
 - Parameter 2: smooth/sharp noise reduction filter
 - Parameter 3: noise reduction level of 9dB/18dB
Background noise transmission simulation

Step 4: Noisy signal processing

- The noisy signal must be processed to take into account the influence of the terminal
 - Convolution with impulse response of WideBand (WB) terminals
 - Application of WideBand (WB) Noise-Suppression Algorithm (NSA)

- Signal processing implemented for STF 294
 - Signal speech+noise down-sampled (from 48 kHz to 16kHz) and filtered out using band-pass filters
 - Noise reduction algorithms with the following parameters
 - Parameter 1: with/without noise estimation using VAD
 - Parameter 2: smooth/sharp noise reduction filter
 - Parameter 3: noise reduction level of 9dB/18dB
Background noise transmission simulation
Step 4: Network simulation (I)

- Noisy speech samples are simulated being transmitted over a network, adding delay, jitter and packet loss
- Real-time network emulator: NIST Net
- Procedure for simulation
 1. The call generators establish a call
 2. WAV files are encoded into the proper format (WB codec) by the sender
 3. The transport module produces RTP/UDP/IP packets to be transmitted over the packet network
 4. The source call generator sends the IP packets to NIST Net emulator through IP address 1
 5. NIST Net applies the selected network conditions (delay, jitter, and packet loss)
 6. NIST Net sends the result of the emulation to the receiver through IP address 2
 7. The receiver obtains the packet load
 8. The WB information is decoded and recorded into WAV format
World Class Standards

Background noise transmission simulation
Step 4: Network simulation (II)

- Parameters which have been varied for the purpose of STF 294
 - Packet loss
 - Delay
 - Jitter

- ITU-T Recommendations
 - One-way speech delay <150 ms (400 ms as an absolute limit)
 - Packet loss <3% for audio communications
 - Jitter should not be more than 20 ms to 50 ms (1ms after de-jigger buffering)

- Conditions emulated

<table>
<thead>
<tr>
<th></th>
<th>End-to-end delay (ms)</th>
<th>Jitter (ms)</th>
<th>Packet loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

Delay/Jitter distribution rule: “heavy-tail”
Packet loss distribution rule: random
Database description

Speech samples with background noise

<table>
<thead>
<tr>
<th>Condition description</th>
<th>Number of conditions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages</td>
<td>French, Czech</td>
<td>2</td>
</tr>
<tr>
<td>Speakers</td>
<td>2 males, 2 females</td>
<td>4</td>
</tr>
<tr>
<td>Noisy background</td>
<td>Cafeteria noise, Office room noise, Road noise, Crossroads, Car noise</td>
<td>5</td>
</tr>
<tr>
<td>Microphone-loudspeaker positions</td>
<td>Typical handset microphone position (with loudness ratings adjusted to 7 dB), Hands-free microphone position (with loudness ratings adjusted to 11 dB)</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>80 (245*2)</td>
</tr>
</tbody>
</table>
Database description

Noise reduction, coding and network transmission conditions

<table>
<thead>
<tr>
<th>Condition description</th>
<th>Number of conditions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise reduction (Flt 135 filter)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Noise estimation using VAD</td>
<td>Smooth noise reduction filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 9 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 18 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smooth noise reduction filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 9 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 18 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sharp noise reduction filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 9 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 18 dB</td>
<td></td>
</tr>
<tr>
<td>Continuous noise estimation (no VAD)</td>
<td>Smooth noise reduction filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 9 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 18 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sharp noise reduction filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 9 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise reduction level of 18 dB</td>
<td></td>
</tr>
<tr>
<td>Coding</td>
<td>G.722 AMR-WB</td>
<td>2</td>
</tr>
<tr>
<td>Network impairments</td>
<td>Delay 0ms ; Jitter 0ms ; Loss 0% (No impairments)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Delay 150ms ; Jitter 10ms ; Loss 1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay 400ms ; Jitter 20ms ; Loss 3%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>54 (923)</td>
</tr>
</tbody>
</table>
Questions?
Thank you!