Predicting Narrow-band and Wideband Speech Quality with WB-PESQ and TOSQA

Nicolas Coté¹,², S. Möller², V. Gautier-Turbin¹
¹ France Télécom R&D, TECH/SSTP/MOV, France
² Deutsche Telekom Laboratories, Germany
(nicolas.cote@orange-ftgroup.com)

ETSI Workshop on Speech and Noise in Wideband Communication,
22nd and 23rd May 2007 - Sophia Antipolis, France
Summary

1. Introduction: "Auditory tests" vs. "Prediction models"

2. Presentation of the WB models
 - WB-PESQ
 - TOSQA-2001

3. Analysis of WB models performance
 - Evaluation procedure
 - Results
 - Analysis of modified WB models

4. Conclusion
Introduction: "Auditory tests" vs. "Prediction models"
Auditory tests

- WB in Auditory test (User's quality judgments)
 - WB speech assessed since earlier 80's (development of G.722 speech codec)
 - Few studies with 5-point MOS scale in a mixed-band context
 - Introduction of the "full-band"

- Improvement of quality for WB transmissions compared to NB transmissions: ≈29% (ITU-T Rec. G.107 Appendix 2)
Prediction models

- Prediction models for WB speech quality: Several models developed during the ITU-T competition for PESQ.
 - WB-PSQM
 - WB-PAMS
 - TOSQA-2001

- WB-PESQ: normalized in 2005 (ITU-T Rec. P.862.2)

- P.OLQA (Objective Listening Quality Assessment): New ITU-T competition for a full-band speech quality model
"Auditory tests" vs. "Prediction models"

- AQUAVIT project (EURESCOM P.905): the first study of several WB speech models
 - The WB-PESQ is better than TOSQA-2001 for a NB context. However, TOSQA-2001 gives better predictions for Mixed-band and WB contexts.

<table>
<thead>
<tr>
<th>Test:</th>
<th>Bandwidth:</th>
<th>WB-PESQ</th>
<th>TOSQA-2001</th>
<th>WB-PAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MB</td>
<td>0.952</td>
<td>0.966</td>
<td>0.946</td>
</tr>
<tr>
<td>2a</td>
<td>NB</td>
<td>0.981</td>
<td>0.954</td>
<td>0.981</td>
</tr>
<tr>
<td>2b</td>
<td>WB</td>
<td>0.977</td>
<td>0.982</td>
<td>0.992</td>
</tr>
</tbody>
</table>
2

Presentation of WB models
PESQ (1/2)

- An intrusive model which needs two audio files
- Consists of four stages:
 1. Input filter (IRS: Intermediate Reference System)
 2. Time alignment
 3. Perceptual model
 4. Mapping function
PESQ (2/2)

- Compensates the system's characteristics which are not relevant in auditory judgments
 - Frequency response
 - Variable gain
 - Variable delay (as seen above)

- Includes an asymmetrical measure (positive or negative disturbance)

- Calculates the speech quality prediction by the difference of the two signals in the perceptual domain and mapped to the MOS scale
WB-PESQ

- WB-PESQ, the WB version of PESQ (ITU-T P.862.2)
- Predicts auditory speech quality judgments in a Mixed-band context
- Two differences to PESQ:
 1. The input filter: FLAT
 2. The output mapping function
- Some changes were proposed in [Côté et al. 2006] in order to improve the correlation of WB-PESQ predictions with auditory judgments
TOSQA

Predicts the speech quality of end-to-end systems, including both terminals. Different filters are available:

1. IRS (modified send)
2. Handset
3. Telephone-band (300-3400 Hz)
4. HATS 3.4 ear in free-field (in NB or WB)
5. Wideband (200-7000 Hz)

Calibration option: Digital level corresponding to 79 dB\text{SPL}

Speech quality predictions based on the correlation between both perceptual-transformed speech signals
Characteristics of TOSQA
1. The calculation of the frequency response is different

Algorithm:
1. Calibration
2. Overall noise calculation
3. Fix delay
4. VAD -> Delay estimation, Gain estimation, Perceptual transformation, Correlation
5. Mapping function

WB version of TOSQA: TOSQA-2001
Experiments
Evaluation Procedure

- 3 databases
- ACR listening quality in a Mixed-band context (MOS scale)
- Comparison:
 - MOS from Auditory Tests (LQSM)
 - MOS predictions from WB models (LQOM)

<table>
<thead>
<tr>
<th>№</th>
<th>Test description</th>
</tr>
</thead>
</table>
| Test 1 | France Télécom R&D (2004)
| | 25 NB and 11 WB conditions |
| Test 2 | IKA – Ruhr-Universität (2005)
| | 9 NB and 9 WB conditions (with band-pass conditions) |
| Test 3 | France Télécom R&D (2006)
| | 30 NB and 30 WB conditions, 36 conditions with packet-loss |
WB-PESQ vs. TOSQA-2001 (1/2)

- **Model's options:**
 - WB-PESQ: +16000 +wb
 - TOSQA-2001: FLAT/WIDEBAND F250 NORM

- **WB-PESQ better than TOSQA-2001**
 1. The Correlation coefficients are higher
 2. Prediction errors are lower

Prediction errors RMSE

Correlation coefficients R

Predicting NB and WB Speech Quality with WB-PESQ and TOSQA / 23 May 2007 / N. Côté – p 15 research & development France Telecom Group
For NB conditions:
- WB-PESQ is clearly better than TOSQA-2001

For WB conditions:
- The correlation coefficients are higher for WB-PESQ than TOSQA-2001
- The RMSE is lower for TOSQA-2001

WB-PESQ underestimates several WB conditions

TOSQA-2001 underestimates the NB conditions (due to the IRS send filter)
Modified models results

- **Modified WB-PESQ:**
 - WB conditions: improve the reliability of WB-PESQ predictions with auditory judgments for
 - NB conditions: under-estimated

- **Modified TOSQA-2001:**
 - improve the TOSQA-2001 predictions of auditory judgments, especially for WB conditions.
4

Conclusions
Conclusions

- WB-PESQ speech quality model provides better estimations of user's judgments than TOSQA-2001

- Problems in both WB models:
 - WB-PESQ on several WB conditions
 - TOSQA-2001 on NB conditions

- Slight changes result in a better prediction for both models
 - improvements of the estimations
 - some problems still remain
Thank you