

ETSI STQ Workshop "Compensating for Packet Loss in Real-Time Applications", Feb 2003

Speech/Audio Coding for IP networks

Alan Duric Sen. Systems Architect SIP/email: alan.duric@globalipsound.com

C Global IP Sound

Agenda

- Introduction
- Traditional approach to speech coding for VoIP applications
- New paradigm
- iLBC
- Questions
- Demo

QoS – (endpoints) perspective

- Year after year the same story
- More then 3000 papers since 1984
- Limited ToS support at the end points
- Introduction of new technologies and applications is making situation even more difficult

QoS is already 19 years old – is it time to get a real job !? 😊

Traditional approach to speech coding for VoIP

CELP SPECIFICS

- Current low bit rate codecs: ITU G.729, G.723.1, GSM-EFR, and 3GPP-AMR were developed for circuit switched & wireless telephony and are all based on the CELP (Code Excited Linear Prediction) paradigm.
- CELP coders are stateful, they have memory, error propagation results from lost or delayed packets.
- Long time is needed to resynchronize coder and decoder (often 70-100 ms)

iLBC Advantage over CELP

original MMMMMMMMMMMMMM

ilbc mmmmmmmmmmmmmmmm

g729 MMMMMMMMM

g723 MMMMMMMMMMMMMMM

PLC

iLBC, like other GIPS codecs treats every packet individually, making it suitable for packet communications. State recovery

C Global IP Sound

New Paradigm

- Approach & diagnose
- What can be improved?
- How?
- Proof of (concept and design)

Approach

We need holistic view/approach for both

- Horizontal (end-to-end) QoS perspective
- Vertical (top-down) QoS perspective

Vertical (Top Down) Perspective

Presentation	Speech Codecs/
Session	SIP/H.323
Transport	RTP/UDP/RSVP
Network	IP/WFQ/IP-prec
Link	MLPPP/FR/ATM AAL1
Physical	

What impacts perceived quality?

VoIP End Point

VoIP End Point

What can be improved?

- One side solutions:
 - Advanced Playout Controller
 - AEC, NEC with right design
- Both end solution:
 - Codec

Design principles

- High basic quality
- Robustness (e.g. for codec no inter-frame dependency, MDC)
- Low complexity
- ...
- Realistic test methodology and tools during design phases

MDC

Improvements for "one-side" solutions

Source: Lockheed Martin Global Telecommunications (COMSAT)

Saved approximately 30-80 ms

iLBC Performance

The tests were performed by Dynstat, Inc., an independent test laboratory. Score system range: 1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excellent

Source: Dynastat

Proof of concept and design (part 3)

telephony band sound quality

wide band sound quality

Source Lockheed Martin global Telecommunication (comsat)

GLOBAL IP SOUND

iLBC (Internet Low Bitrate Codec)

iLBC (internet Low Bitrate Codec)

- Speech sampled at 8 kHZ,
- using a block-independent linear-predictive coding (LPC) algorithm.
- Bandwidth 13.33 kbps (50 bytes per 30 ms)
- Frame size 30 ms (support for 20 ms in the next revision)
- Complexity and memory requirements are similar to ITU G.729A
- Basic Quality is equal to or better than G.729. Packet loss robustness is significantly better than G.729.
- Packet loss concealment Integrated example solution

The Core iLBC method

- Start state encoding
- Gain-shape waveform matching forward in time
- Gain-shape waveform matching backward in time
- Pitch enhancement
- Packet loss concealment

iLBC - IETF work

- IETF deliverables, submitted during February '02:
 - iLBC codec specification draft
 experimental standards track
 - iLBC RTP Payload Profile
 regular standards track (AVT)
 - Statement about IPRs in ILBC and its "freeware nature"

Summary

- Accelerate deployment of VoIP technology by using realistic QoS enhancements and solutions that are already available
- VoIP endpoints, focus on both: one side improving solutions and both end improving solution
- Move quality exprience to the next level with wideband coders

Questions ???

Demo

More information

Web site www.ilbcfreeware.org with:

- Info about initiative
- Info about codec
- Latest iLBC IETF drafts (spec and payload format)
- Latest iLBC float point Source code
- FAQ list
- IETF drafts:

 - draft-ietf-avt-ilbc-00.txt
 codec spec (exper. stds track)
 - draft-ietf-avt-rtp-ilbc-00.txt
- RTP payload profile (AVT group)
- Web site www.globalipsound.com
- Free demo SIP client available, please request at: SIP/email: alan.duric@globalipsound.com

