3GPP TS 35.201 V3.1.1 (2001-07)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
3G Security;

Specification of the 3GPP Confidentiality

and Integrity Algorithms;

Document 1: {8 and f9 Specification

(Release 1999)

The present document has been developed within the 3" Generation Partnership Project (3GPP ™) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP™ system should be obtained via the 3GPP Organizational Partners Publications Offices.

Release 1999 2 3GPP TS 35.201 V3.1.1 (2001-07)

Keywords
3GPP, algorithm, KASUMI

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

I nternet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizationa Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).
All rights reserved.

3GPP

Release 1999 3 3GPP TS 35.201 V3.1.1 (2001-07)

Contents

0] 1= Yoo TSSO 4
011 0o [Tox £ o o USSR 4
0 o0 0= RS 5
NORMATIVE SECTION ...ttt sttt sttt h et b et sae e e sb e s ae et e sbeeaeenbesae e e e abeeneeseesbeentenbeas 6
1 Outline Of the NOIMELIVE PAIT.........ceie ettt s e e ae e eeste e e eneesreeneenne e 7
O = = 1= Tor =S OSSOSO 7
2 (FpLugelo W e (o AT o1 0] 207 o] TR 7
2% R 1 0 (oo LFTox 1 o o RSP TRPRR 7
A2 [= (o] DU PRTRPRR 8
221 = o) PR 8
222 (@0] 117 011 0] 1S USSR 8
223 2072377 (=00 = 1 oo P 8
224 IS 0 Y 0o o 8
2.3 LISt Of VAITBDIES ...ttt ettt b et b et b bbbt b bt ee e 9
3 Confidentiality @gOrithM T8........couoiiec bbb e 9
00 R 1 0 (oo LFTox 1 o o O SPUTRPRR 9
A 1 0o 10 E== o (o @ U1 o | U TP 9
3.3 ComMPONENtS N ATCHITECTUIE ...ttt et bt sb et e ae e eese e besbesbesaeeaeeneensebesbesbesaeeneannans 10
3 1 0L (= T (o g OSSP USRS 10
R (= S =2 0 W €T g = (oo DTS URUR USRS 10
3.6 ENCIYPLON/DECIYPLION ..c.veiieeeeeeeetesiesteste e et s e e e e see e seessesseeseesaeseenteseestessesaeeseeseensessessesseeneeneensenteseessenneenennenns 11
4 Integrity algorithM O ettt st eesae e e e e 11
St R 1 1 (o [F oo o USROS 11
4.2 INPUES QN OULPULS.......eeneenie ittt ettt sttt saesae et e eeseesbesaeebeeaeeaeeasese e besaeebeeaeeaeeneeae e besaeebeeaeeneenbeseesbesaeabenneennan 11
4.3 ComponentS and AFCHITECTUNEoiiie ettt bt e e bbb e st eb e e st e e e e e seesbesaeebe e e anean 11
O 1 TR (= L o) o PO SRR 12
I O o U1 =[] ISR 12
INFORMATIVE SECTION ...ttt ettt sbe bt e ae e s ae e s aeesae e sae e e b e e beebe e eaneenneeseee e 13
Annex 1 (infor mative): Figuresof thef8 and f9 AIQOrithms..........cccooeiriniinene e 14
Annex 2 (informative): Simulation Program LiSting.......ccccoevieieiiieie et 16
Annex 3 (informative): Change NiStOrY ..o 20

3GPP

Release 1999 4 3GPP TS 35.201 V3.1.1 (2001-07)

Foreword
This Technical Specification has been produced by the 3 Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of the 3GPP
confidentiality algorithm f8, and the 3GPP integrity agorithm f9.

This document is the first of four, which between them form the entire specification of the 3GPP Confidentiality and
Integrity Algorithms:

- 3GPP TS 535.201: " Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and f9
Algorithm Specifications'.

- 3GPP TS 535.202: " Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 2: KASUM |
Algorithm Specification”.

- 3GPP TS 535.203; " Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 3:
Implementors’ Test Data.

- 3GPP TS 535.204: " Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 4: Design
Conformance Test Data".

The normative part of the specification of the f8 (confidentiality) and f9 (integrity) algorithmsisin the main body of
this document. The annexes to this document are purely informative. Annex 1 containsillustrations of functional
elements of the algorithm, while Annex 2 contains an implementation program listing of the cryptographic algorithm
specified in the main body of this document, written in the programming language C.

The normative part of the specification of the block cipher (KASUM) on which they are based isin the main body of
Document 2. The annexes of that document, and Documents 3 and 4 above, are purely informative.

3GPP

Release 1999 5 3GPP TS 35.201 V3.1.1 (2001-07)

0 Scope

This specification gives a detailed specification of the 3GPP confidentiality algorithm f8, and the 3GPP integrity
algorithm 9.

3GPP

Release 1999 6 3GPP TS 35.201 V3.1.1 (2001-07)

NORMATIVE SECTION

This part of the document contains the normative specification of the Confidentiality and Integrity algorithms.

3GPP

Release 1999 7 3GPP TS 35.201 V3.1.1 (2001-07)

1 Outline of the normative part

Section 1 introduces the algorithms and describes the notation used in the subsequent sections.
Section 3 specifies the confidentiality algorithm f8.
Section 4 specifies the integrity algorithm f9.

1.1 References

The following documents contain provisions which, through reference in thistext, congtitute provisions of the present
document.

» References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

» For aspecific reference, subsequent revisions do not apply.

» For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
aGSM document), a non-specific reference implicitly refersto the latest version of that document in the same
Release as the present document.

[1] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects;
3G Security; Security Architecture (3G TS 33.102 version 3.2.0)
[2] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects;
3G Security; Cryptographic Algorithm Requirements; (3G TS 33.105 version 3.1.0)
[3] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 1: f8 and f9 specifications.
[4] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 2: KASUMI Specification.
[5] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 3: Implementors’ Test Data.
[6] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 4: Design Conformance Test Data.
[7] Information technology — Security techniques — Message Authentication Codes (MACS). ISO/IEC
9797-1:1999
2 Introductory information
2.1 Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms: A confidentiality algorithm
8, and an integrity algorithm f9. These algorithms are fully specified here. Each of these algorithmsis based on the
KASUMI algorithm that is specified in a companion document[4]. KASUM | isablock cipher that produces a 64-bit
output from a 64-bit input under the control of a 128-bit key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of data under a confidentiality
key CK. Theblock of data may be between 1 and 5114 bitslong. The algorithm uses KASUM I in aform of output-
feedback mode as a keystream generator.

Theintegrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given input message using an
integrity key IK. The approach adopted uses KASUM | in aform of CBC-MAC mode.

3GPP

Release 1999 8 3GPP TS 35.201 V3.1.1 (2001-07)

2.2 Notation

221 Radix

We use the prefix 0x to indicate hexadecimal numbers.

2.2.2 Conventions
We use the assignment operator ‘=", as used in several programming languages. When we write
<variable> = <expression>
we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,
X=X+y+3
means

(new value of x) becomes (old value of x) + (old value of y) + 3.

2.2.3 Bit/Byte ordering

All data variablesin this specification are presented with the most significant bit (or byte) on the left hand side and the
least significant bit (or byte) on the right hand side. Where avariable is broken down into a number of sub-strings, the
left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the
least significant.

For example an n-bit MESSAGE is subdivided into 64-bit substrings M Bo,MB;...MB; so if we have a message:
0x0123456789ABCDEFFEDCBA987654321086545381A B594FC28786404C50A37 ...
we have:

M B, = 0x0123456789ABCDEF
MB; = OXFEDCBA9876543210
M B, = 0x86545381AB594FC2
M B3 = 0x8786404C50A37...

In binary this would be:

000000010010001101000101011001111000100110101011110011011110111111111110...

with M B, = 0000000100100011010001010110011110001001101010111100110111101111
MB; =1111111011011100101110101001100001110110010101000011001000010000
M B, = 1000011001010100010100111000000110101011010110010100111111000010
M B3 = 1000011110000110010000000100110001010000101000110111....

2.2.4 List of Symbols

= The assignment operator.
a The bitwise exclusive-OR operation
Il The concatenation of the two operands.

KASUMI[x]x ~ The output of the KASUM | agorithm applied to input value x

using the key k.
X[i] Thei™ bit of the variable X. (X = X[0] || X[1] I X[2] || -....).
Y, Thei™ block of thevariable Y. (Y = Yo |l Y1 || Y2]....).

3GPP

Release 1999 9 3GPP TS 35.201 V3.1.1 (2001-07)

2.3 List of Variables

AB are 64-hit registers that are used within the f8 and f9 functions to hold intermediate values.

BEARER a5-bit input to the f8 function.

BLKCNT a 64-bit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of KASUMI that need to be
performed, for both the f8 and f9 functions.

CK a 128-hit confidentiality key.

COUNT a 32-bit time variant input to both the f8 and f9 functions.

DIRECTION al-bit input to both the f8 and f9 functions indicating the direction of transmission (uplink or
downlink).

FRESH a 32-bit random input to the f9 function.

IBS the input bit stream to the f8 function.

IK a 128-hit integrity key.

KM a 128-hit constant that is used to modify akey. Thisisused in both the f8 and f9 functions. (It
takes a different value in each function).

K] isthei™ bit of keystream produced by the keystream generator.

KSB; isthei™ block of keystream produced by the keystream generator. Each block of keystream
comprises 64 bits.

LENGTH isan input to the f8 and f9 functions. It specifies the number of bitsin the input bitstream (1-
5114).

MAC-I is the 32-bit message authentication code (MAC) produced by the integrity function 9.

MESSAGE isthe input bitstream of LENGTH bitsthat is to be processed by the f9 function.
OBS the output bit streams from the f8 function.

PS isthe input padded string processed by the f9 function.

REGISTER isa 64-bit value that is used within the 8 function.

3 Confidentiality algorithm {8

3.1 Introduction

The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data between 1 and 5114 bitsin
length.

3.2 Inputs and Outputs

The inputs to the algorithm are given in table 1, the output in table 2:

3GPP

Release 1999 10 3GPP TS 35.201 V3.1.1 (2001-07)
Table 1: f8 inputs
Parameter Size (bits) Comment
COUNT 32 | Frame dependent input
COUNTI0]...COUNT[31]
BEARER 5 | Bearer identity BEARER[0]...BEARER[4]
DIRECTION 1 | Direction of transmission DIRECTIONJO]
CK 128 | Confidentiality key CK]Q]....CK[127]
LENGTH x181 | The number of bits to be encrypted/decrypted
(1-5114)
IBS 1-5114 | Input bit stream 1BS[0]....IBS[LENGTH-1]
Table 2: 8 output
Parameter Size (bits) Comment
OBS 1-5114 | Output bit stream OBS[0]....OBS[LENGTH-1]
3.3 Components and Architecture

(Seefig 1 Annex A)

The keystream generator is based on the block cipher KASUM I that is specified in[4]. KASUMI isused in aform of
output-feedback mode and generates the output keystream in multiples of 64-bits.

The feedback datais modified by static data held in a 64-bit register A, and an (incrementing) 64-bit counter BLK CNT.

34 Initialisation

In this section we define how the keystream generator isinitialised with the key variables before the generation of
keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0...0
(left justified with the right most 26 bits set to 0).
i.e. A= COUNTI[(Q]...COUNT[31] BEARER[(Q]...BEARER[4] DIRECTION[(] 0...0

We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555
We set KSBy to zero.

One operation of KASUM | is then applied to the register A, using a modified version of the confidentiality key.

A =KASUMI[A Jek oxm

3.5 Keystream Generation

Once the keystream generator has been initialised in the manner defined in section 3.4, it isready to be used to generate
keystream bits. The plaintext/ciphertext to be encrypted/decrypted consists of LENGTH bits (1-5114) whilst the
keystream generator produces keystream bits in multiples of 64 bits. Between 0 and 63 of the least significant bits are
discarded from the last block depending on the total number of bits required by LENGTH.

So let BLOCK S be equal to (LENGTH/64) rounded up to the nearest integer. (For instance, if LENGTH = 128 then
BLOCKS=2;if LENGTH =129 then BLOCKS=3))

To generate each keystream block (K SB) we perform the following operation:

1x1gisa parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

3GPP

Release 1999 11 3GPP TS 35.201 V3.1.1 (2001-07)

For each integer n with 1 <n < BLOCK Swe define:
KSB,=KASUMI[A OBLKCNT O KSBp.1]ck
where BLKCNT =n-1

Theindividual bits of the keystream are extracted from K SB; to K SBg|_ocks in turn, most significant bit first, by
applying the operation:

Forn=1to BLOCKS, and for each integer i with 0 <i < 63 we define:
K ((n-1)*64)+i] = KSB[i]

3.6 Encryption/Decryption

Encryption/decryption operations are identical and are performed by the exclusive-OR of the input data (IBS) with the
generated keystream (K S).

For each integer i with0<i < LENGTH-1 we define:

OBS]i] = IBS]i] O K S]]

4 Integrity algorithm f9

4.1 Introduction

Theintegrity algorithm f9 computes a Message A uthentication Code (MAC) on an input message under an integrity key
IK. The message may be between 1 and 5114 bitsin length.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) asis used by the confidentiality
algorithm 8.

4.2 Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: f9 inputs

Parameter Size (bits) Comment
COUNT-I 32 | Frame dependent input COUNT-I[0]...COUNT-I[31]
FRESH 32 | Random number FRESH|0]...FRESH[31]
DIRECTION 1 | Direction of transmission DIRECTIONJO0]
IK 128 | Integrity key 1KJ[0]...IK[127]
LENGTH X192 | The number of bits to be ‘MAC’d
MESSAGE LENGTH | Input bit stream

Table 4: f9 output

Parameter Size (bits) Comment

MAC-I 32 | Message authentication code MAC-I[0]...MAC-1[31]

3GPP

2x19isa parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

Release 1999 12 3GPP TS 35.201 V3.1.1 (2001-07)

4.3 Components and Architecture

(Seefig2 Annex A)

The integrity function is based on the block cipher KASUM| that is specified in[4]. KASUMI isused in a chained
mode to generate a 64-bit digest of the message input. Finally the leftmost 32-bits of the digest are taken as the output
value MAC-I.

4.4 Initialisation

In this section we define how the integrity function isinitialised with the key variables before the calculation
commences.

We set the working variables: A =0
and B =0

We set the key modifier KM to OXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We concatenate COUNT, FRESH, MESSAGE and DIRECTION. Wethen append asingle ‘1’ bit, followed by
between 0 and 63 ‘0’ bits so that the total length of the resulting string PS (padded string) is an integral multiple of 64
bits, i.e.:

PS= COUNTI[0]...COUNT[31] FRESH[0]...FRESH[31] MESSAGEJQ]...
MESSAGE[LENGTH-1] DIRECTION[O] 1 O

Where 0" indicates between 0 and 63 ‘0’ bits.

4.5 Calculation
We split the padded string PS into 64-bit blocks PS where:
PS=PS || PS, || P& || -... [[PSsLocks1
We perform the following operations for each integer n with0 <n <BLOCK S$-1:

A =KASUMI[A O PS,]k
B=BOA

Finally we perform one more application of KASUM I using amodified form of the integrity key I1K.
B =KASUMI[B likokm
The 32-bit MAC-I comprises the left-most 32 bits of the result.
MAC-I =Ilefthalf[B]
i.e. For eachinteger i with 0 <i < 31 we define:
MAC-I[i] = BJ[i].
Bits B[32]...B[63] are discarded.

3GPP

Release 1999 13 3GPP TS 35.201 V3.1.1 (2001-07)

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative specification of KASUMI.

3GPP

Release 1999 14 3GPP TS 35.201 V3.1.1 (2001-07)

Annex 1 (informative):
Figures of the f8 and f9 Algorithms

COUNT || BEARER || DIRECTION || 0...0

v

CKOKM —p{ KASUMI

v

A
BLKCNT=0 & BLKCNT=1 BLKCNT=2 BLKCNT=BLOCKS-1
v i
CK —p{ KASUMI CK —p{ KASUMI CK —p{ KASUMI E CK —p{ KASUMI
v v v i
KS[0]...Kg[63] KS[64]...Kg[127] KS[128]...KS[191]
Figure 1: f8 Keystream Generator
Note: BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression

A O BLKCNT O KSBy,.; where al operands are of the same size. In apractical implementation where
the key stream generator is required to produce no more than 5114 bits (80 keystream blocks) only the
least significant 7 bits of the counter need to be realised.

3GPP

Release 1999 15 3GPP TS 35.201 V3.1.1 (2001-07)

COUNT|FRESH | MESSAGE | DIRECTION || 1]|0... 0
v v I v

|
v

PS, PS PS, PSsLocks1
}
}
i
}

IK P KASUMI IK P KASUMI IK P KASUMI | IK P KASUMI

}
}
i
I

IK OKM P KASUMI

v

MAC-I (left 32-bits)

Figure 2: f9 Integrity function

3GPP

Release 1999 16

3GPP TS 35.201 V3.1.1 (2001-07)

Annex 2 (informative):
Simulation Program Listing

Header file

typedef unsigned char us;
typedef unsigned short ul6;
typedef unsigned |ong u32;

[*-ee-- a 64-bit structure to help with endian issues -----

typedef union {
u32 b32[2];
ulé bl6[4];
u8 b8[8];
} REQ STER64;

R T prototypes ----------------mmo oo
voi d KeySchedul e(u8 *key);
voi d Kasum (u8 *data);

u8 * f9(u8 *key,int count,int fresh, int dir,u8 *data,int
void f8(u8 *key,int count,int bearer,int dir,u8 *data,int

Function f8

22
* F8 - Confidentiality Al gorithm

K o o o o o e e e e e e e e e e a2
*

* A sanple inplementation of f8, the 3GPP Confidentiality algorithm
*

* This has been coded for clarity, not necessarily for efficiency.

*

* This will conpile and run correctly on both Intel (little endian)
* and Sparc (big endian) machi nes. (Conpilers used supported 32-bit
*

* Version 1.0 05 Novenber 1999

*

*

#i ncl ude "kasum . h"
#i ncl ude <stdi o. h>

e eaa o
* f8()
* G ven key, count, bearer, direction, data,
* and bit length encrypt the bit stream
K o e e e e e e e e e e e e e e e e e e e - -
void f8(u8 *key, int count, int bearer, int dir, u8 *data,
REG STER64 A, /* the nodifier */
REG STER64 t enp; /* The working register */
int i, n;
u8 ModKey][16] ; /* Modified key */
ulé bl kent; /* The bl ock counter */

/* Start by building our global nodifier */

t enp. b32[0]
A. b32[0]

tenp. b32[1]
A b32[1]

0;
0;

/* initialise register in an endian correct manner*/

A.b8[0] = (u8) (count>>24);
A . b8[1] = (u8) (count>>16);
A.b8[2] = (u8) (count>>8);
A.b8[3] = (u8) (count);

3GPP

*/

*/

*/

length);
length);

int

ints)

Release 1999 17 3GPP TS 35.201 V3.1.1 (2001-07)

A. b8[4]
A b8[4]

(u8) (bearer<<3);
(u8) (dir<<2);

/* Construct the nodified key and then "kasum " A */
for(n=0; n<16; ++n)
ModKey[n] = (u8) (key[n] ~ 0x55);
KeySchedul e(MbdKey);
Kasumi (A.b8); /* First encryption to create nodifier */

/* Final initialisation steps */

bl kent = 0;
KeySchedul e(key);

/* Now run the bl ock cipher */
while(length >0)
/* First we calculate the next 64-bits of keystream */
/* XOR in A and BLKCNT to |ast value */
tenmp. b32[0] ~= A b32[0];
tenp. b32[1] ~= A b32[1];
tenp. b8[7] "= bl kent;
/* KASUM it to produce the next block of keystream */
Kasumi (tenp. b8);

/* Set <n> to the nunber of bytes of input data *

* we have to nodify. (=8 if length <= 64) */
if(length >= 64)

n = §;
el se

n = (length+7)/8;
/* XOR the keystreamwi th the input data stream */
for(1=0; i<n; ++i)

*data++ "= tenp.b8[i];
length -= 64; /* done another 64 bits */

++bl kent /* increment BLKCNT */

}
}
/2
* end o f f 8 c
K o e e e e e e e e e e e e e e e e e - - */
Function f9
22
* F9 - Integrity Algorithm
K o o o o o e e e e e e e e e e a2
*
* A sanple inplementation of f9, the 3GPP Integrity algorithm
*
* This has been coded for clarity, not necessarily for efficiency.
*
* This will conpile and run correctly on both Intel (little endian)
* and Sparc (big endian) machi nes. (Conpilers used supported 32-bit ints)
*
* Version 1.1 05 Septenber 2000
*
*

#i ncl ude "kasum . h"
#i ncl ude <stdi o. h>

G ven key, count, fresh, direction, data,
and nessage | ength, cal cul ate the hash val ue

N

3GPP

Release 1999

u8 *f9(u8 *key,

{

18

int count, int fresh, int dir,
REQ STER64 A, /*
REG STER64 B; /*
u8 FinalBit][8]
u8 MbddKey[16] ;
static u8 mac_i[4];
int i, n;

Hol ds t he CBC chai ned data
Hol ds the XOR of all

/* static menory for the result

/* Start by initialising the block cipher */

KeySchedul e(key);

/* Next initialise the MAC chain. Make sure we *
* have the data in the right byte order.
* <A> hol ds our chaining val ue... *
* is the running XOR of all KASUM o/ ps
for(n=0; n<4; ++n)
A. b8[n] = (u8) (count>>(24-(n*8)));
A.b8[n+4] = (u8)(fresh>>(24-(n*8)));
}
Kasumi (A b8);
B. b32[0] = A b32[0];
B.b32[1] = A b32[1];

/* Now run the bl ocks until

while(length >= 64)
{

for(n=0; n<8; ++n)
A. b8[n] "= *data++;
Kasum (A. b8);
length -= 64,
B. b32[0] ~= A b32[0]; /* running XOR across */
B. b32[1] ~= A b32[1]; /* the bl ock outputs

}

/* Process whole bytes in the last block */

n=0;
while(length >=8)

A. b8[n++] ~= *dat a++;
length -= 8§;

u8 *dat a,

KASUM out puts
= {0x80, 0x40, 0x20, O0x10, 8,4,2,1};

*/

*/

we reach the |l ast block */

*/

/* Now add the direction bit to the input bit stream

* |f length (which holds the # of data bits in the *
* |ast byte) is non-zero we add it in, otherw se
* it has to start a new byte. */
if(length)
{
i = *data;
if(dir)
i |=FinalBit[length];
}
el se
i =dir ? 0x80 : 0;
A. b8[n++] "= (u8)i;
/* Now add in the final '1" bit. The problemhere *
* is if the nessage | ength happens to be n*64-1.
* |f so we need to process this block and then *
* create a new input block of 0x8000000000000000. */

if((length==7) && (n==8))
{

Kasumi (A b8);
B. b32[0] ~= A b32[0];
B. b32[1] ~= A b32[1];

/* running XOR across
/* the bl ock outputs

A. b8[0] ~= 0x80; /* toggle first bit

i = 0x80;

3GPP

*/
*/

*/

int

*/
*/

*

I ength)

/* then we've filled the block */

3GPP TS 35.201 V3.1.1 (2001-07)

Release 1999 19 3GPP TS 35.201 V3.1.1 (2001-07)

n =1,
}
el se
if(length == 7)) /* we finished off the last byte */
A. b8[n] ~= 0x80; /* so start a new one..... */
el se
A b8[n-1] "= Final Bit[length+l];
}

Kasum (A. b8);
B. b32[0] ~= A b32[0]; /* running XOR across */
B. b32[1] ~= A b32[1]; /* the bl ock outputs */

/* Final step is to KASUM what we have using the
* key XORd with OxAAAA. */

for(n=0; n<16; ++n)
ModKey[n] = (u8)*key++ N OxAA;
KeySchedul e(ModKey);
Kasumi (B. b8);
/* We return the left-npst 32-bits of the result */

for(n=0; n<4; ++n)
mac_i[n] = B.b8[n];

return(mac_i);

3GPP

Release 1999 20 3GPP TS 35.201 V3.1.1 (2001-07)

Annex 3 (informative):
Change history

Change history
Date TSG # TSG Doc. |CR |Rev [Subject/Comment Oold New
12-1999 |- - - - ETSI SAGE Publication (restricted) - SAGE
v1.0
05-2000 |- - - - ETSI SAGE update: Small change to sample code (16-bit SAGE [SAGE
portability issue) vi0 |vl1
09-2000 |- - - - ETSI SAGE update: Small change to sample f9 code (boundary SAGE [SAGE
condition) vli1l |vl1.2
09-2000 [SA_07 Approved by TSG SA and placed under change control SAGE [3.1.0
v1.2
07-2001 |- - - - Word version received: Re-formatted into 3GPP TS format (MCC) |3.1.0 (3.1.1
No technical change from version 3.1.0.

3GPP

	Foreword
	Introduction
	0 Scope
	NORMATIVE SECTION
	1 Outline of the normative part
	1.1 References

	2 Introductory information
	2.1 Introduction
	2.2 Notation
	2.2.1 Radix
	2.2.2 Conventions
	2.2.3 Bit Byte ordering
	2.2.4 List of Symbols

	2.3 List of Variables

	3 Confidentiality algorithm f8
	3.1 Introduction
	3.2 Inputs and Outputs
	3.3 Components and Architecture
	3.4 Initialisation
	3.5 Keystream Generation
	3.6 Encryption Decryption

	4 Integrity algorithm f9
	4.1 Introduction
	4.2 Inputs and Outputs
	4.3 Components and Architecture
	4.4 Initialisation
	4.5 Calculation

	INFORMATIVE SECTION
	Annex 1 (informative): Figures of the f8 and f9 Algorithms
	Annex 2 (informative): Simulation Program Listing
	Annex 3 (informative): Change history

