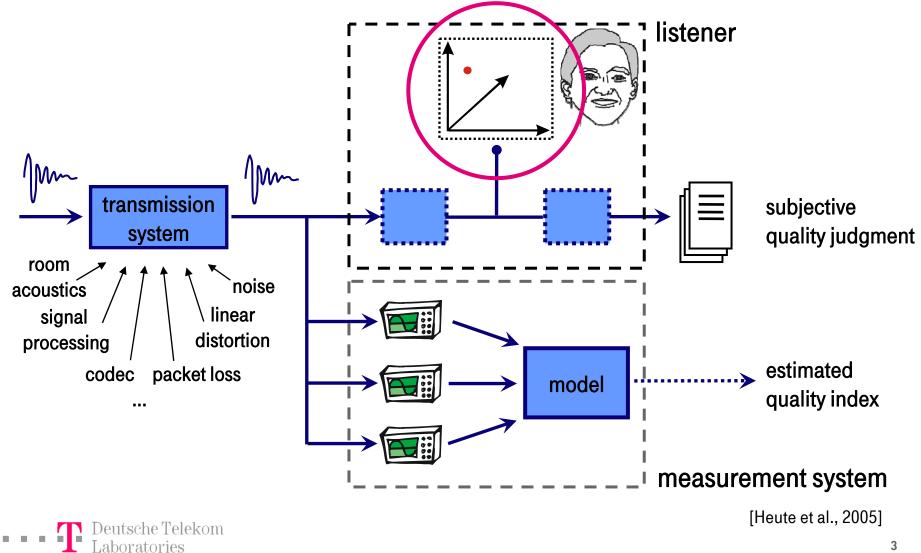


Dimension Analysis of Wideband-transmitted Speech

Marcel Wältermann, Alexander Raake, Sebastian Möller

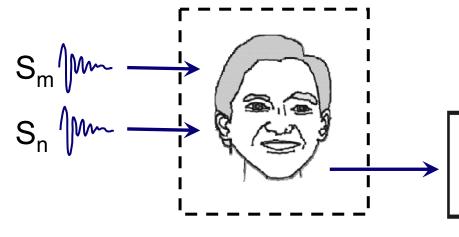
Deutsche Telekom Laboratories, TU Berlin, Germany

- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook

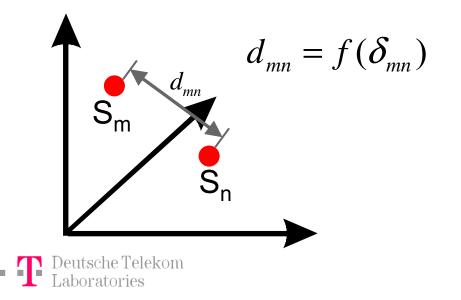


Measuring Speech Quality: Perceptual Approach

- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook


Measuring Speech Quality **Perceptual Approach**


- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook



Experiment 1: Multidimensional Scaling (MDS) Principle

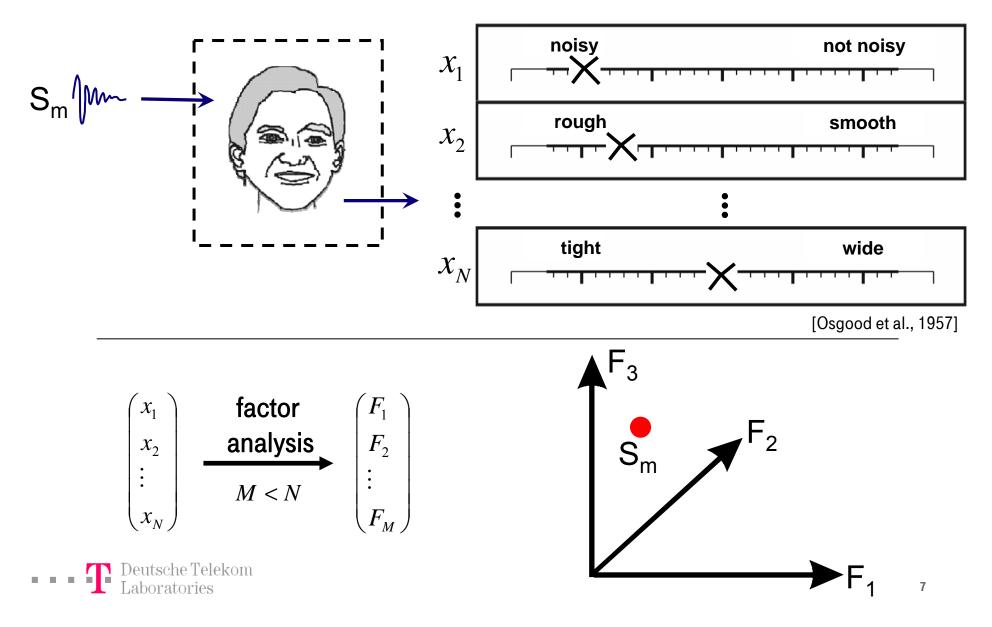
similarity
$$\delta_{mn}$$
 of the samples S_m und S_n

determine dimensionality, so that

•
$$\sum_{mn} (\delta_{mn} - d_{mn})^2 \rightarrow \min$$

mn,m≠n

• dimensions interpretable


[Borg/Groenen, 2005]

Experiment 1: Multidimensional Scaling (MDS) Details

- $/ \cdot (/-1)$ pairs have to be judged, where / is the number of stimuli
- 2 speakers (male/female), / = 14, resulting in 364 judgments
- 19 participants (9 f, 10 m)
- INdividual Differences SCALing (rotationally invariant configuration)

Experiment 2: Semantic Differential (SD) Principle

Experiment 2: Semantic Differential (SD) Details

- 2 pre-tests with 10 "experts" (5 f, 5 m)
 - pre-test 1: Collection of descriptive terms
 - pre-test 2: Selection of perceptively salient antonyms out of a set of the most frequently named terms in pre-test 1
 - result: 28 Antonym-pairs for semantic differential
- 28 participants (13 f, 15 m), both "experts" and naïve listeners
- $28 \cdot / judgments$, where / is the number of stimuli
- 2 speakers (male/female), /=14, resulting in 784 judgments
- no individual differences were taken into account
- PCA and VARIMAX rotation

Speech Samples

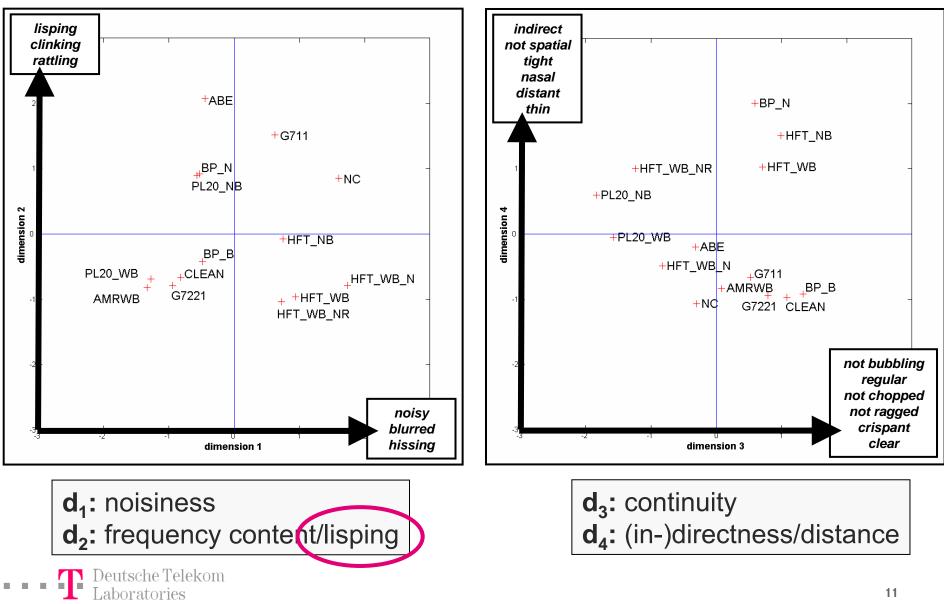
Abbreviation	WB/NB	Processing elements		
CLEAN	WB	Direct channel		
G7221	WB	G.722.1 @ 24 kbps		
AMRWB	WB	AMR-WB @ 6.6 kbps		
G711	NB	G.711		
BP_N	NB	G.711, 0.5 – 2 kHz bandpass		
BP_B	WB	0.1 – 5 kHz bandpass		
HFT_NB	NB	Hands-free terminal		
HFT_WB	WB	Hands-free terminal		
NC	NB	G.711, additional circuit noise		
HFT_WB_N	WB	Hands-free terminal, background noise		
HFT_WB_NR	WB	Hands-free terminal, noise suppression		
PL20_NB	NB	G.729A, 20% packet loss		
PL20_WB	WB	AMR-WB @ 23.05 kbps, 20% packet loss		
ABE	WB	G.711, artificial bandwidth enhancement		

Pre-analysis of the MDS and SD data

General considerations

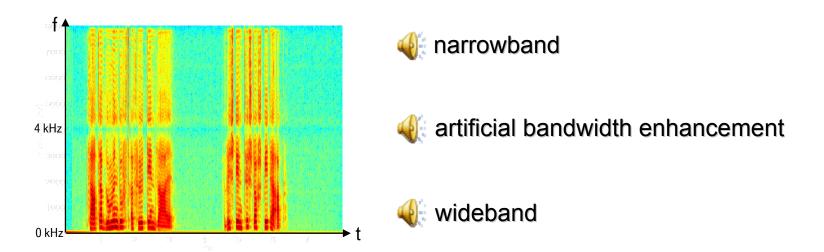
- between-subject factor *subject-group* is statistically not significant
- interpretation of male and female speaker solution is the same

Dimensionality


- MDS: 4-dimensional solution well interpretable (Stress = 0.19)
- SD: Kaiser criterion (eigenvalues of the correlation matrix >1) supports a 4-dimensional solution ($R^2 \approx 93\%$)

Comparison between SD and MDS solution

- mappings of the perceptual space highly resemble each other
- high correlations between single factors of SD data and dimensions of MDS data


Mapping of the Perceptual Space

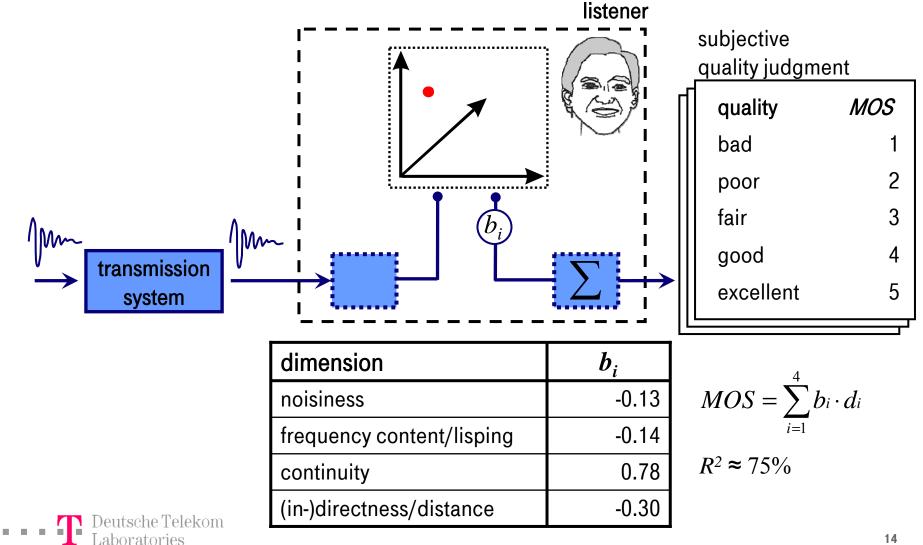
The Perceptual Attribute "Lisping"

"Continuity", "noisiness" and "directness" have comparable counterparts in the narrowband-only case [Wältermann et al., 2006] however, "lisping" does not!

"Lisping" is the disability to pronounce sibilants properly, and instead replace them with interdentals

"Lisping" can be interpreted as an **anomaly** or **lack** of high frequency components which are necessary for rendering sibilants correctly (more general label: "frequency content")

- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results


Modeling Overall Quality

- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook

Modeling Overall Quality

Further experiment: Collecting overall quality judgments Mapping of the dimensions onto Mean Opinion Scores (MOS)

- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook

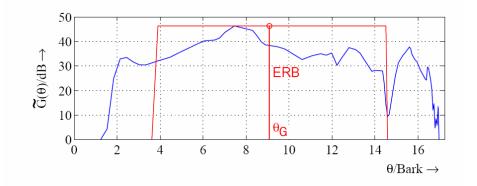
Perceptually Motivated Degradation Indicators in P.OLQA

P.OLQA (Objective Listening Quality Assessment): Future objective quality measure standardized by ITU-T [ITU-T TD 12-57]

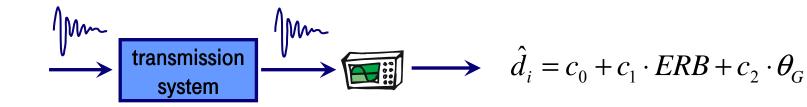
Optional feature: degradation indicators [ITU-T COM 12-4, 12-26, 12-53]

Perceptually motivated indicators provide:

- perceptually relevant degradations
- optional output for establishing a link to physical correlates
- proven perceptual orthogonality
- assignment of degradation types to indicators in the training and benchmark phase:
 - Frequency Content/Directness: Linear filters, room-acoustic effects
 - Noisiness: Additive noise, multiplicative noise
 - Continuity: Musical tones, error (packet loss) conditions



- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook


Example: Degradation Indicator "Frequency content"/"Directness"

Pilot Study: Exploit two simple physical parameters to capture the frequency-related dimensions

$$ERB = \frac{\operatorname{area}\{\widetilde{G}(\theta)\}}{\max\{\widetilde{G}(\theta)\}} \qquad \theta_G = \frac{\int \widetilde{G}(\theta) \cdot \theta \, d\theta}{\int \widetilde{G}(\theta) \, d\theta}$$

 $\widetilde{G}(\theta)$ is the smoothed and bandlimited version of the gain function $G(\theta)$ of a system

<u>,</u> , , , , ,		d ₁	d ₂	d_3	d ₄
$\hat{d}_2: c_1 << c_2 $	r	0.64	0.86	0.48	0.70
$\hat{d}_4: c_1 >> c_2 $	RMSE	0.77	0.51	0.88	0.71

cf. [Scholz et al., 2005]

- Measuring Speech Quality: Perceptual Approach
- Quality Dimensions of Wideband-transmitted Speech
 - Experiment 1: Multidimensional Scaling (MDS)
 - Experiment 2: Semantic Differential (SD)
 - Results
- Modeling Overall Quality
- Perceptually Motivated Degradation Indicators in P.OLQA
- Example: Frequency-related Degradation Indicator
- Summary and Outlook

Summary and Outlook

Perceptual approach for wideband speech quality measurement.

For the considered set of speech files,

4 speaker-independent dimensions could be identified:

- continuity
- (in-)directness/distance
- frequency content/lisping
- noisiness

Perceptual dimensions provide a means for defining degradation indicators in standardization process of a new objective quality measure.

Example for frequency-related dimension estimator/degradation indicator

Transition from NB to WB is not necessarily enough in order to provide a better quality in telephony!

Exploratory analysis! Increase of resolution of single dimensions needed.

Thank you!

The present study was carried out at Deutsche Telekom Laboratories, TU Berlin, Germany. It was supported by the Deutsche Forschungsgemeinschaft (DFG), grant MO 1038/5-2.

References

Borg, L.; Groenen, P.: *Modern Multidimensional Scaling – Theory and Applications*. Springer Series in Statistics, New York NY, 2005.

Heute, U.; Möller, S.; Raake, A.; Scholz, K.; Wältermann, M.: Integral and Diagnostic Speech-quality Measurement: State of the Art, Problems, and New Approaches. In: *Proc. 4th European Congress on Acoustics (Forum Acusticum 2005)*, H-Budapest, 2005.

ITU-T Contribution COM 12-4: *Speech Degradation Decomposition Using a P.862 PESQ Based Approach.* Source: TNO Telecom, Netherlands (J. G. Beerends), International Telecommunication Union, CH-Geneva, 2004.

ITU-T Contribution COM 12-26: *P.OLQA Speech Quality Degradation Decomposition Benchmark Proposal.* Source: TNO Information and Communication Technology, Netherlands (J. G. Beerends, J. M. van Vugt), International Telecommunication Union, CH-Geneva, 2006.

ITU-T Contribution COM 12-53: *P.OLQA Degradation Decomposition – Perceptual Basis for Degradation Indicators*. Source: Deutsche Telekom AG (M. Wältermann, S. Möller), International Telecommunication Union, CH-Geneva, 2007.

ITU-T Temporary Document TD 12-57: *Requirement specification for P.OLQA*. Source: Rapporteur of Question 9/12, International Telecommunication Union, CH-Geneva, 2007.

Möller, S.: *Assessment and Prediction of Speech Quality in Telecommunications*. Kluwer Academic Publishers, Boston MA, 2000.

Osgood, C.; Suci, G.; Tannenbaum, P.: *The Measurement of Meaning*. University of Illinois Press, Urbana IL, 1957.

Raake, A.: Speech Quality of VoIP - Assessment and Prediction. Wiley, UK-Chichester, West Sussex, 2006.

Scholz, K.; Wältermann, M.; Huo, L.; Raake, A.; Möller, S.; Heute, U.: Vergleich der instrumentellen Erfassung der Qualitätsdimension 'Direktheit/Frequenzgehalt' bei Schmalband- und Breitbandsprache. In: *7. ITG-Fachtagung Sprachkommunikation*, VDE Verlag, D-Berlin, 2006.

Wältermann, M.; Scholz, K.; Raake, A.; Heute, U.; Möller, S.: Underlying Quality Dimensions of Modern Telephone Connections. In: *Proc. 9th International Conference on Spoken Language Processing (ICSLP 2006)*, Pittsburgh PA, 2006.

