Dual Narrowband / Wideband Noise Reduction

C. Beaugeant, Nokia Siemens Networks

M. Schönle, Siemens AG

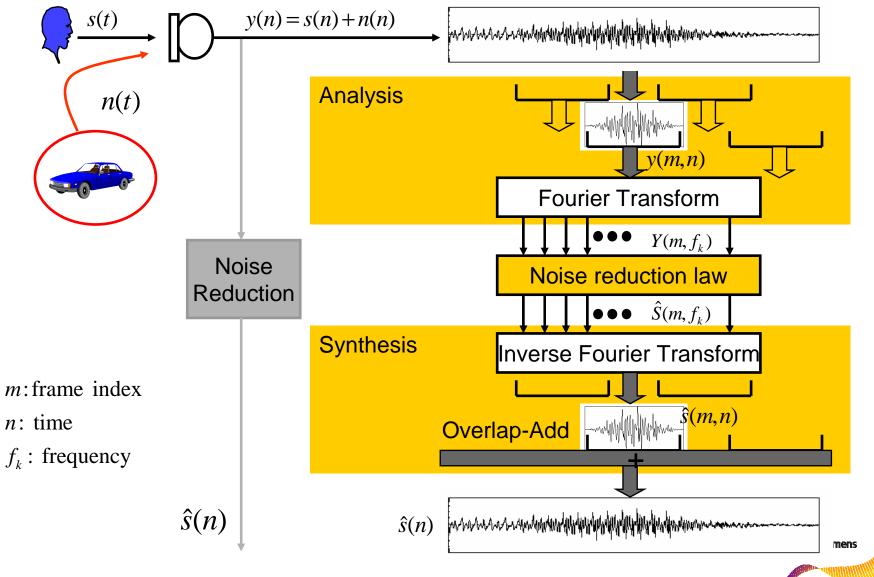
Public

Introduction

- Difference between wideband noise reduction and narrowband noise reduction ?
- Dual systems narrowband / wideband
- Architecture proposal
- Example solutions
- Conclusion

Wideband audio : What for?

- Historically, telecommunication uses limited bandwidth (300Hz-3400Hz)
- Wideband telephony: a simple solution to increase quality
- New applications propose wideband speech telecommunication
 - New services with VoIP (G.722, G.729.1)
 - Enhancement of quality for UMTS (AMR-WB)
- Front-end algorithms must follow codecs and applications development. Wideband solution needed for
 - Noise reduction
 - Echo cancellation
 - Automatic level control
 - Transducer enhancement
 - Microphone array



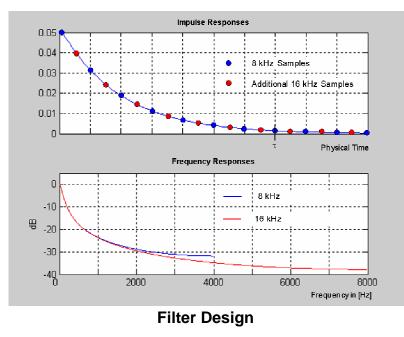
Overview on noise reduction

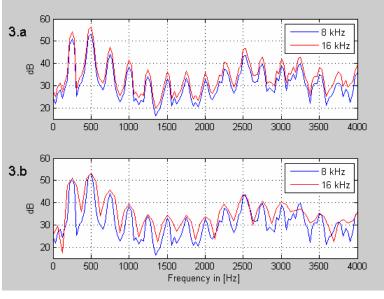
- Noise reduction mainly focused till now on the problematic for telephony (sampling frequency 8 kHz)
- Rare examples for other sampling rate than 8 kHz (speech recognition, combination of noise reduction with AMR-WB)
- First solutions at the beginning of the 80's
- Aim: reducing noise on the microphone signal to enhance quality, reduce tiredness for the far-end user
- Boost of industrial solution widely implemented when telephony get mobile:
 - Mobile terminals used in highly noisy environment
 - Carkit solutions
- Widely used solution based on short time frequency domain analysis
 - Analysis of successive windowed frames
 - Fourier transform
 - Applying a weighting gain on the amplitude of the frequency signal
 - Inverse Fourier transform
 - Overlap-add

Overview of Noise reduction in the frequency domain

5 © Nokia Siemens Networks

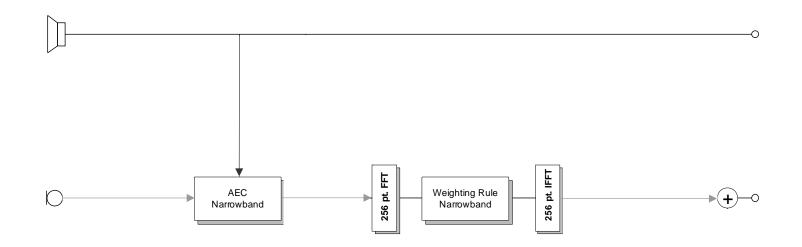
Difference wideband / narrowband noise reduction


- A priori same solution
 - FFT analysis/synthesis independent from sampling frequency
 - Weighting rule a priori independent from sampling frequency
 - Test on transposing narrowband solution to wideband solution already successful [1]
- But differences on many parameters!
 - FFT length different to get same resolution in narrowband and wideband
 - Smoothing factors highly depending on sampling frequency
 - Many variables depend on the sampling frequency: values of threshold, energy estimation, SNR estimation
- Important tuning needed to make the transposition of a narrowband noise reduction to a wideband noise reduction [2]
- Increase of computation load (up to twice more)


[1] C. Beaugeant, I. Varga, T. Lotter, P. Jax, P. Vary, Noise Reduction for AMR-WB, 2nd workshop on Wideband Speech Quality, 06.2005
[2] C. Beaugeant, M. Schönle, I. Varga, `Challenges of 16 kHz in Acoustic Pre- and Post-Processing for Terminals IEEE Com magazine, May 2006.

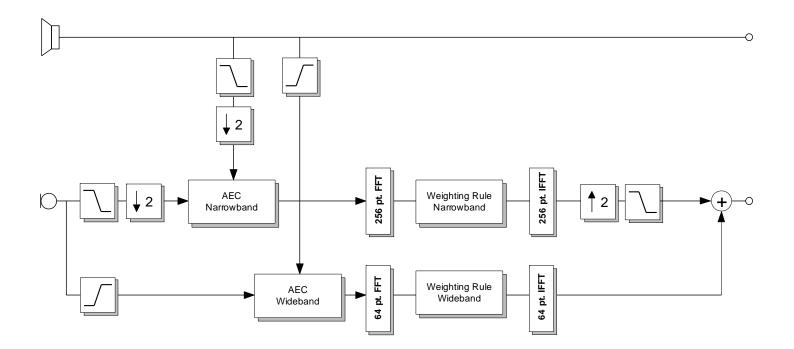
Challenge of dual systems

- Modern terminals to get both narrowband / wideband functionalities
- Example: UMTS phone
 - Wideband telephony in UMTS network
 - Narrowband telephony in GSM network
- Idea: Get a single front-end for both modes
- Problem: Many values to be tuned to get such universal front-end
- Two examples Filter design, FFT resolution



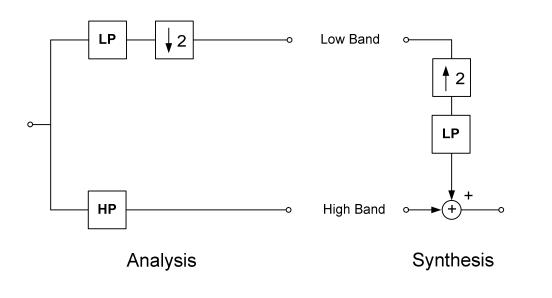
3.a: Speech PSD (FFT length doubled @ 16 kHz)3.b: Frequency resolution with same FFT length

Architecture for dual system


- Backward compatibility
- Reuse of 8 kHz system

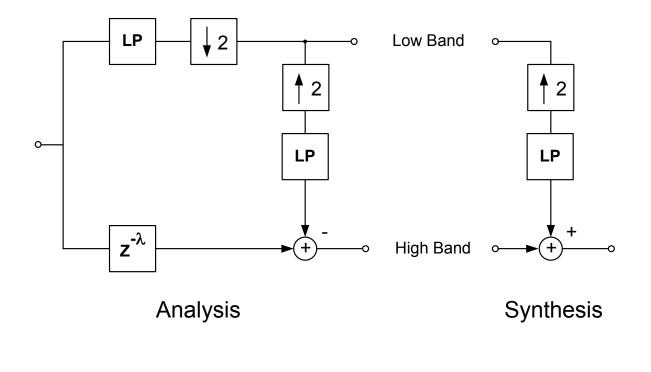
Architecture for dual system

- Extension to wideband audio
- Plug-in of simple two-channels filter bank



Requirements to filter bank

- High stopband attenuation
- Only small amount of aliasing
- Perfect Reconstruction


- Low complexity
- Low group delay
- Simple design

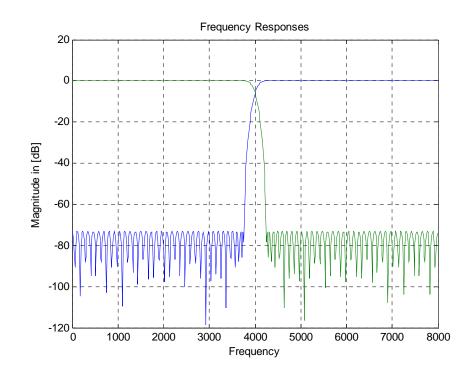

Example solution : filter bank design

- All-pass-Complementary Filter Bank
 - "Laplacian Pyramid": High band adds details
 - Perfect reconstruction guaranteed by structure
 - No synthesis filter required in high band

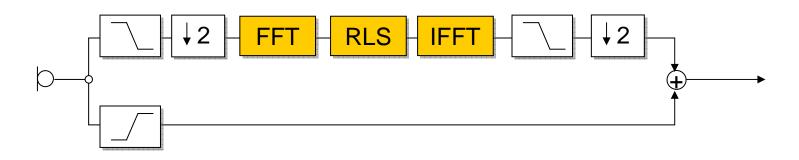
Example solution : filter bank design

Anti-aliasing filtering by low-pass

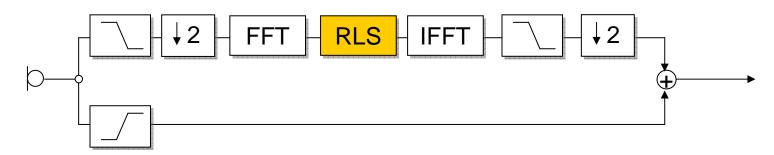
Decimation of sampling rate \rightarrow aliasing components


Doubling of sampling rate

Same low-pass filter used for anti-imaging filtering


Example solution : filter bank design

- Design of only one FIR low-pass filter
- High-pass filter is obtained by filter bank structure
- Simple design using Remez Algorithm
- Half-band filters can be used
- Example for N = 140
 - Stop-band attenuation 72 dB
 - No aliasing up to f = 3.75 kHz
 - Group Delay 4.4 ms @ 16kHz



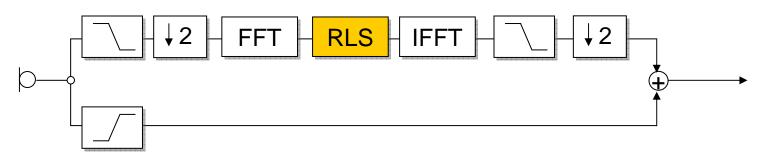
Solution 1: noise reduction in low band

- Analysis / synthesis applied only in the narrowband part
- No noise reduction in the high band
 - Assumption that noise is less disturbing in higher band (psychoacoustic)
 - Assumption than SNR is higher above 4 kHz (Plosive speech sound)
- Advantage:
 - small computation load increase compared to narrowband system
- Drawback:
 - No noise reduction in higher band

Recursive Least Square (RLS) in low band

• Minimization of the cost function $J_m(e(f_k)) = \sum_{l=0}^m \lambda^{m-l} e^2(l, f_k)$

with $e(l, f_k) = S(l, f_k) - \hat{S}(l, f_k)$


- λ forgetting factor
- Leads to the following weighting rule (RLS)

$$G_{LS}(m, f_k) = \frac{\sum_{l=0}^{m} \lambda^{m-l} S^2(l, f_k)}{\sum_{l=0}^{m} \lambda^{m-l} S^2(l, f_k) + \sum_{l=0}^{m} \lambda^{m-l} N^2(l, f_k)}$$

So that $\hat{S}(m, f_k) = G_{LS}(m, f_k) \cdot Y(m, f_k)$

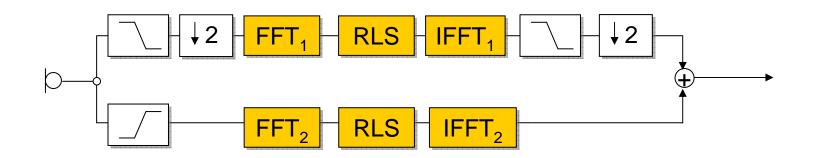
Recursive Least Square (RLS) in low band

Simplified version (no need of estimation of the speech signal)

$$G_{LS}(m, f_k) = \frac{\sum_{l=0}^{m} \lambda_Y^{m-l} Y^2(l, f_k)}{\sum_{l=0}^{m} \lambda_Y^{m-l} Y^2(l, f_k) + \sum_{l=0}^{m} \lambda_N^{m-l} \hat{N}^2(l, f_k)}$$

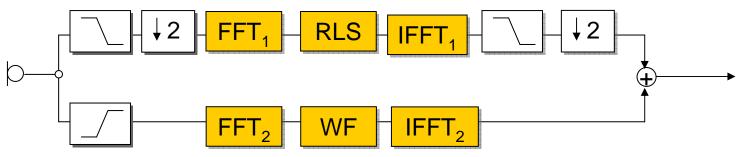
 $\lambda \longrightarrow \lambda_Y \ \lambda_N$

Tuning parameters

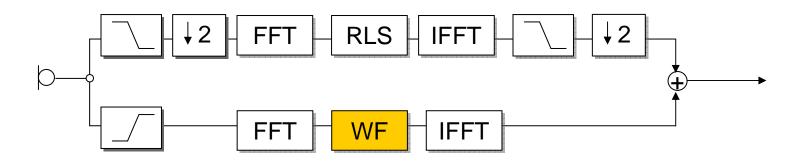

 $G_{LS}(m, f_k)$ can be seen as a combination of two filters

$$G_{LS}(m, f_k) = G_1(m, f_k) + \beta_2 G_2(m, f_k)$$

$$\beta_2 = \frac{1 - \lambda_N}{2 - \lambda_N - \lambda_Y}$$
Noise reduction filter:
$$G_1 = G_1(\lambda_Y, \lambda_N)$$
Output : ,clean speech'
$$Output : ,clean noise'$$


Solution 2 : RLS in both bands

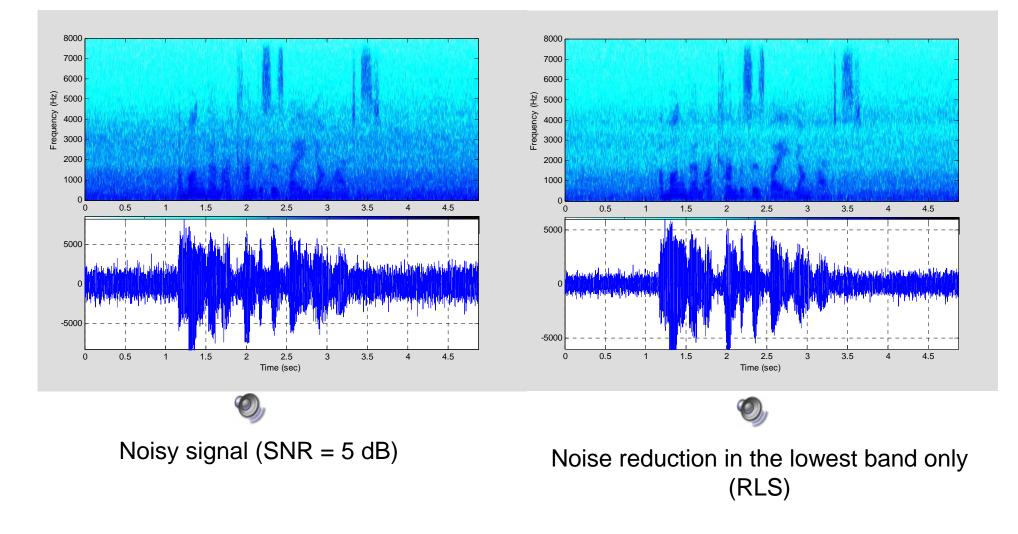
- Same algorithm in both bands: RLS
- Analysis / synthesis different on the bands
 - FFT₁ : 5 ms overlap, 256 pts
 - FFT₂: 5 ms overlap, 32 pts
- Good compromise for ROM:
 - Partial re-use of the same functions for the higher and lower band


Solution 3 : different kind of noise reduction in the bands

- Study of the robustness of the architecture when different solutions are built on the two bands
- Analysis / synthesis different on the bands
 - FFT_1 : 5 ms overlap, 256 pts
 - FFT₂: 5 ms overlap, 32 pts
 - Wiener filter in the higher band
- Idea: Possibility of special tuning, special algorithm for the higher band
 - Taking into account special SNR
 - Plosive characteristic of speech signal
 - Psycho-acoustic

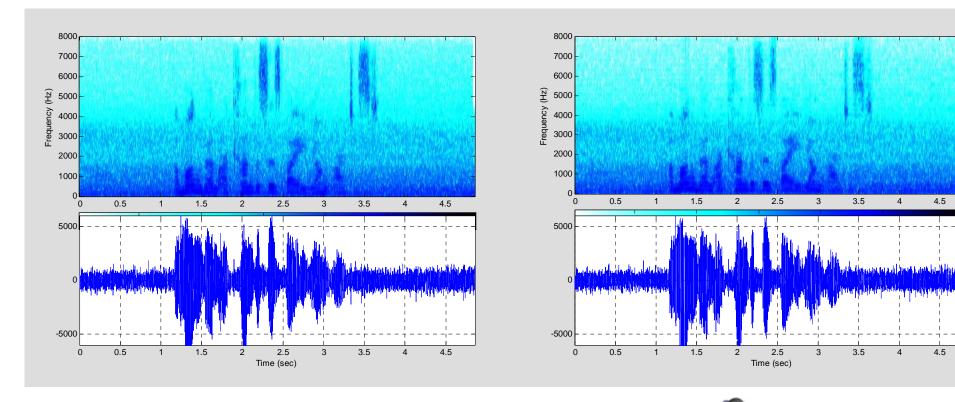
Solution 3 : algorithm for the high band

• Wiener filter in the frequency domain:


$$G(m, f_k) = \frac{SNR(m, f_k)}{1 + SNR(m, f_k)} \text{ for } k = 0, 1, \dots, NFFT - 1$$

• Ephraim & Malah SNR estimation [3]:

$$SNR(m, f_k) = \beta_1 \cdot \frac{|Y(m, f_k)|^2 - \hat{\gamma}_n(m, f_k)}{\hat{\gamma}_n(f_k)} + (1 - \beta_1) \cdot \frac{G^2(m - 1, f_k)|Y(m - 1, f_k)|^2}{\hat{\gamma}_n(f_k)}$$


[3] Y. Ephraim und D. Malah, "`Speech Enhancement Using a Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator". IEEE Trans. On ASSP, ASSP-32, Nr. 6, Dec. 1984 Nokia Stemens Networks

Demos

Demos

0

RLS Noise reduction in both bands

RLS Noise reduction in the low band

Wiener noise reduction in the high band

Conclusion

- Proposed architecture gives an answer for designing a dual narrowband wideband noise reduction
- Study of particular dual noise reductions
 - No modification of already existing narrowband noise reduction
 - Scalable solution
 - 3 schemes proposed showing the feasibility and the potential of the architecture
- Perspectives:
 - Open questions on the optimal resolution needed in the high band, on the best compromise computation load vs. quality
 - Open field of research for better solution of noise reduction dedicated to the high frequency band [4 kHz, 8 kHz]
 - Easy scalability to other sampling rates (32-48kHz)
 - Same principle can be used for other front-end algorithms (echo cancellation, automatic level control...)
 - Interaction and optimization together with scalable speech codecs (G.729.1)

