

Session III: New ETSI Model on Wideband Speech and Noise Transmission Quality – Phase I

IP transmission simulation

ETSI Workshop on Speech and Noise in Wideband Communication

Isabel Ordás (Telefónica I+D) © ETSI 2007. All rights reserved

ETSI	
	7//

Index

□ Performance parameters

- Delay, jitter, packet loss
- Parameter interaction and dependences
- Wideband codecs
 - > Overview
 - ≻ G.722
 - > AMR-WB

Background noise transmission simulation

- > Steps
- Step 1: Speech sequences
- Step 2: Noisy conditions
- Step 3: Noisy signal processing
- Step 4: Network simulation

Database description

- Speech samples with background noise
- Noise reduction, coding and network transmission conditions

Performance parameters

Delay, jitter, packet loss

Lots of conditions and parameters that can influence on speech quality

- **Delay:** amount of time it takes for a signal to reach a destination
 - Very direct impact on user satisfaction
 - ITU: <150ms (preferred) ; 400 ms (limit)</p>
 - Codec delay + packetization delay + output queuing delay + serialization delay + network delay + network switching delay + propagation delay + de-jitter delay

□ Jitter: variation of delay

- Services intolerant of delay variation take solutions to reduce it by means of buffering (de-jitter buffers) increases delay
- ITU: <1ms (audio applications after de-jitter buffer); <30 ms (no buffer)</p>
- Packet loss: percentage of data packets which are lost
 - Very direct effect
 - ITU: < 3% (audio applications)</p>

Performance parameters

Parameter interaction and dependences

These parameters are not independent one another

Wideband codecs

Overview

- □ Wider band of frequency (50 Hz to 7000 Hz) compared to traditional Narrowband speech (200 Hz to 3400 Hz)
- Increase intelligibility and naturalness of speech
 - > 50 Hz 200 Hz : increased naturalness, presence and comfort
 - > 3400 Hz 7000 Hz : fricative differentiation and higher intelligibility
- Digitalised at 16 kHz
 - ≻ 16-bit integer → 256 kbps
- ❑ Speech compression becomes of significant importance

Wideband codecs G.722

- □ ITU-T Recommendation
- SB-ADPCM (Sub Band Adaptive Differential Pulse Code Modulation)
- 3 modes of operation : 64 kbps; 56 kbps (auxiliary data channel 8kbps) and 48 kbps (auxiliary data channel 16 kbps)
- Encoder

Wideband codecs AMR-WB

- **3GPP /ETSI**
- Recommendation G.722.2 ITU-T
- ACELP (Algebraic Code Excited Linear Prediction Coder)
- Adaptive codec capable of operating at 9 modes of operation : 6.6 kbps, 8.85 kbps, 12.65 kbps, 14.25 kbps, 15.85 kbps, 18.25 kbps, 19.85 kbps, 23.05 kbps and 23.85 kbps
- Encoder

* 3 bits, indicating whether information bits are available and if they are speech or SID information

Background noise transmission simulation Steps

Database of noise type/wideband terminal/network impairment combinations

Background noise transmission simulation

Step 1: Speech sequences

Recording a representative number of speech sequences without background noise

Conditions

- > 48 kHz (16 bit) sampling rate
- > Wave format
- Active speech level equalized to -26 dBov

❑ Number of samples

- > 4 speakers (2 male, 2 female), 8 sentences each
- 2 languages: Czech, French
- Length of recordings between 24s and 73s
 - Neutral sentences of 2s to 3s separated by pauses
 - Speech activity factor between 30% and 60%

Background noise transmission simulation

Step 2: Noisy conditions

Different background noises need to be recorded for each speech file

- Cafeteria noise
- > Office room noise
- Road noise
- Crossroads
- Car noise (car hands-free at 130 km/h)

□ Two microphone-loudspeaker positions

- Typical handset microphone position (with loudness ratings adjusted to 7dB)
- Hands-free microphone position (with loudness ratings adjusted to 11dB)

Background noise transmission simulation

Step 3: Noisy signal processing

The noisy signal must be processed to take into account the influence of the terminal

- Convolution with impulse response of WideBand (WB) terminals
- > Application of WideBand (WB) Noise-Suppression Algorithm (NSA)

□ Signal processing implemented for STF 294

- Signal speech+noise down-sampled (from 48 kHz to 16kHz) and filtered out using band-pass filters
- Noise reduction algorithms with the following parameters
 - Parameter 1: with/without noise estimation using VAD
 - Parameter 2: smooth/sharp noise reduction filter
 - Parameter 3: noise reduction level of 9dB/18dB

Background noise transmission simulation

Step 4: Noisy signal processing

The noisy signal must be processed to take into account the influence of the terminal

- Convolution with impulse response of WideBand (WB) terminals
- > Application of WideBand (WB) Noise-Suppression Algorithm (NSA)

□ Signal processing implemented for STF 294

- Signal speech+noise down-sampled (from 48 kHz to 16kHz) and filtered out using band-pass filters
- > Noise reduction algorithms with the following parameters
 - Parameter 1: with/without noise estimation using VAD
 - Parameter 2: smooth/sharp noise reduction filter
 - Parameter 3: noise reduction level of 9dB/18dB

Background noise transmission simulation

Step 4: Network simulation (I)

- Noisy speech samples are simulated being transmitted over a network, adding delay, jitter and packet loss
- □ Real-time network emulator: NIST Net

Procedure for simulation

- 1. The call generators establish a call
- 2. WAV files are encoded into the proper format (WB codec) by the sender
- 3. The transport module produces RTP/UDP/IP packets to be transmitted over the packet network
- 4. The source call generator sends the IP packets to NIST Net emulator through IP address 1
- 5. NIST Net applies the selected network conditions (delay, jitter, and packet loss)
- 6. NIST Net sends the result of the emulation to the receiver through IP address 2
- 7. The receiver obtains the packet load
- 8. The WB information is decoded and recorded into WAV format

Background noise transmission simulation

Step 4: Network simulation (II)

❑ Parameters which have been varied for the purpose of STF 294

- Packet loss
- > Delay
- > Jitter

ITU-T Recommendations

- One-way speech delay <150 ms (400 ms as an absolute limit)</p>
- Packet loss <3% for audio communications</p>
- Jitter should not be more than 20 ms to 50 ms (1ms after de-jigger buffering)

Conditions emulated

	End-to-end delay (ms)	Jitter (ms)	Packet loss (%)		
1	0	0	0		
2	150	10	1		
3	400	20	3		
Delay/Jitter distribution rule : "heavy-tail" Packet loss distribution rule : random					

Database description

Speech samples with background noise

Condition description	Number of conditions	Total
Languages	French Czech	2
Speakers	2 males 2 females	4
Noisy background	Cafeteria noise Office room noise Road noise Crossroads Car noise	5
Microphone-loudspeaker positions	Typical handset microphone position (with loudness ratings adjusted to 7 dB) Hands-free microphone position (with loudness ratings adjusted to 11 dB)	2
	TOTAL	80 (2*4*5*2)

Database description

Noise reduction, coding and network transmission conditions

Condition description	Number of conditions			Total
Noise reduction (Flt 135 filter)	No noise estimation			9
	Noise estimation using VAD	Smooth noise reduction filter	Noise reduction level of 9 dB	
			Noise reduction level of 18 dB	
		Sharp noise reduction filter	Noise reduction level of 9 dB	
			Noise reduction level of 18 dB	
	Continuous noise estimation (no VAD)	Smooth noise reduction filter	Noise reduction level of 9 dB	
			Noise reduction level of 18 dB	
		Sharp noise reduction filter	Noise reduction level of 9 dB	
			Noise reduction level of 18 dB	
Coding	G.722 AMR-WB			2
Network impairments	Delay 0ms ; Jitter 0ms ; Loss 0% (No impairments) Delay 150ms ; Jitter 10ms ; Loss 1% Delay 400ms ; Jitter 20ms ; Loss 3%			3
TOTAL				54 (9*2*3)

Questions? Thank you!