

STF 294 Phase 2: Step 1: Data Selection Step 2: Development of Objective Model

STQ Workshop (Sophia Antipolis, May, 23th 2007)

S. Poschen, H.W. Gierlich HEAD acoustics GmbH

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Overview

Introduction

- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Introduction

Initial problem: known, standardized methods (PESQ, TOSQA2001, ...) do not work for noisy environments

Proceeding within STF:

- 1. Experts: data selection acc. ToR
- 2. Model Development:
 - Expert analysis of listening test results
 - Model development

Afterwards: validation of model by Telefonica / Universidad de Valladolid

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - > G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Expert Analysis of Listening Test Results

Two Purposes:

- Select conditions within the scope of the model
- Extract parameters influencing human's assessment decision

Criteria for the condition selection:

- > Artifacts, others than intended by the data generation process
- Inconsistencies within one condition due to the selection of the individual speech samples for the listening test
- Inconsistencies within one condition due to statistical variation in signal generation process (packet loss, ...)
- Inconsistencies due to P.56 level adjustment process chosen for the complete files including the background noise (French data)
- Influences of different listening levels used in French and Czech database

Results of Experts Selection

General:

- proposed sample length of 4s (P.835) may be too short even for expert listeners
- mostly all samples (French) of network condition 1&3 (0% PL, 3% PL) were retained;
- network condition 2 (1% PL, 20ms jitter) samples were rejected due to inconsistent distribution of PL in the 8 sentences of 1 condition

❑ French database:

- > 6 sentences of one condition were rated by 4 listeners each
- Ievel of each sentence + background noise adjusted to 79dB_{SPL} (P.56)
- > most samples retained, but 28 conditions (of NI and NIII) rejected of due to
 - not consistent (high) signal levels caused by amplification to 79dB_{SPL}
 - insufficient S/N \rightarrow speech almost inaudible

→ 260 of 432 conditions were retained (60%), 179 for training and 81 for validation

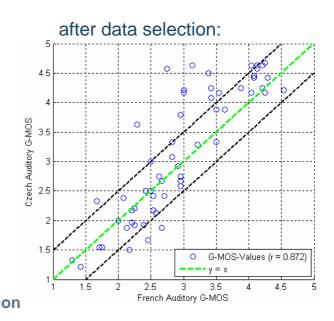
Results of Expert Selection

Czech database:

- > 1 sentence (randomly) per condition was rated by 24 listeners
- Ievel of each sentence + background noise NOT adjusted after processing
 - \rightarrow lower level than French samples
 - \rightarrow level variation within Czech data of up to 16 dB
- conditions (of NI and NIII) retained, if
 - at least one paket loss occured during speech and one during background noise
 - the overall active speech level is at least 69dB_{SPL}
 - the background noise level is consistent compared to the speech level

→ 88 of 432 conditions were retained (20%), 60 for training and 28 for validation




Results of Expert Selection

→ correlation between the French and Czech S-/N-/G-MOS was increased by the data selection process:

Over all available ratings (French and Czech, 302 condition each)	Only Czech and French selected MOS Data (NI and NIII conditions, ratings reviewed by experts) (59 conditions selected for French and Czech)
S-MOS: 0.703	S-MOS: 0.830
N-MOS: 0.816	N-MOS: 0.897
G-MOS: 0.668	G-MOS: 0.871

e.g. G-MOS

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- □ Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Purpose of Model

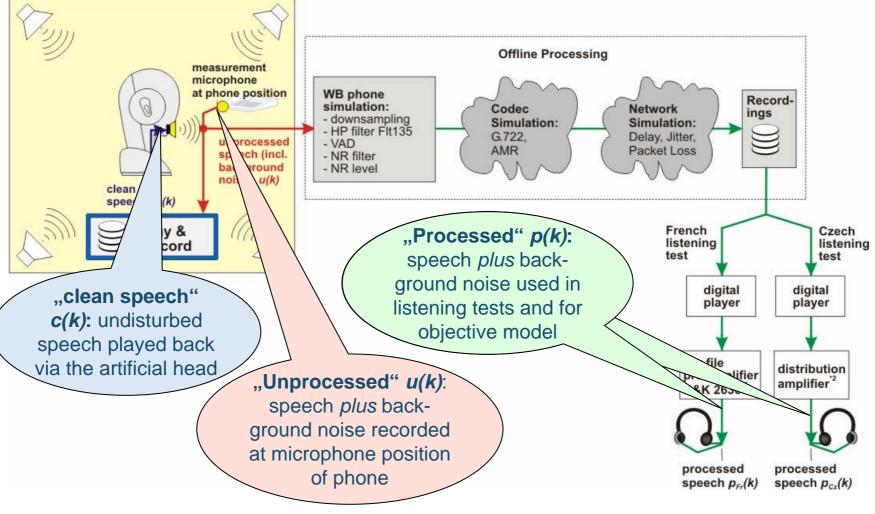
Principles of new model:

Reproduction of human perception by choosing a hearingadequate analysis

- \rightarrow Use parameters from expert analysis results
- □ High correlation to given STF database
- □ Assurance of robustness for other databases

Relevant Parameters (based on experts analysis)

➢ for N-MOS


- □ absolute background noise level
- modulation of background noise
- "naturalness" of background noise
- Iost packets

➢ for S-MOS

- Level and quality of processed background noise
- Signal to noise ratio (SNR)
 between speech and noise in the processed signal
- Change in SNR before and after processing
- modulation of speech, speech sound, "naturalness"
- Iost packets

Sample Generation Procedure

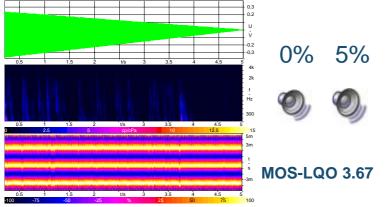
STF 294 - Objective Model

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Base Analysis: Relative Approach

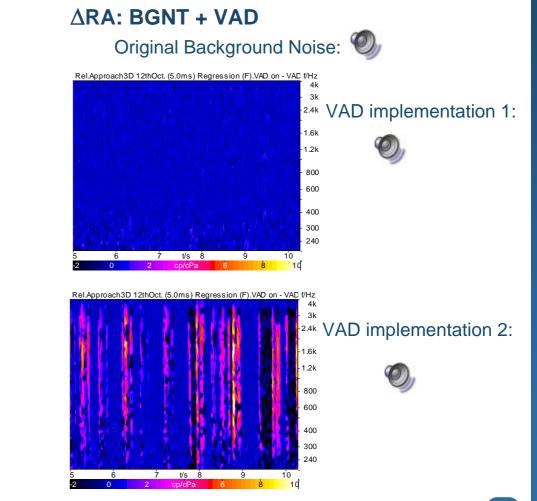
Relative Approach:

- ➢ Hearing-adequate time and frequency resolution → 3D "spectrograph"
- Forward estimation analogue human expectation based on signal history
- unexpected patterns shown as "estimation errors"
- no reference needed
- > applicable for packet loss, VAD, background noises


Variant: "A Relative Approach"

- Determination of "similarity" between two signals by subtracting two Relative Approach 3D spectrographs
- \rightarrow 3D "delta-spectrograph"

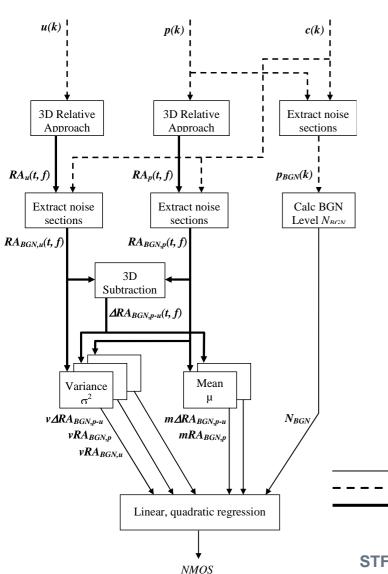
Relative Approach: Analysis Examples


RA: PLC

0%

MOS-LQO 3.31

5%



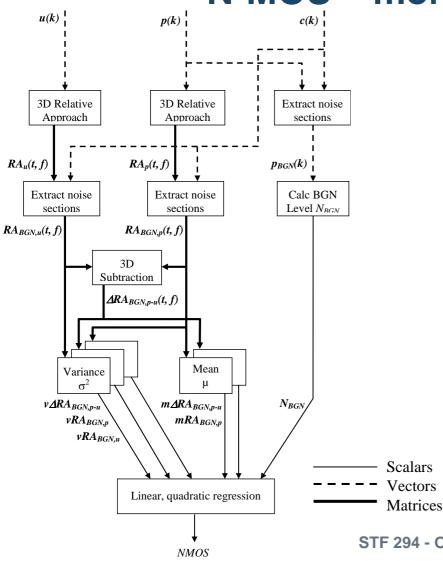
STF 294 - Objective Model

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

N-MOS

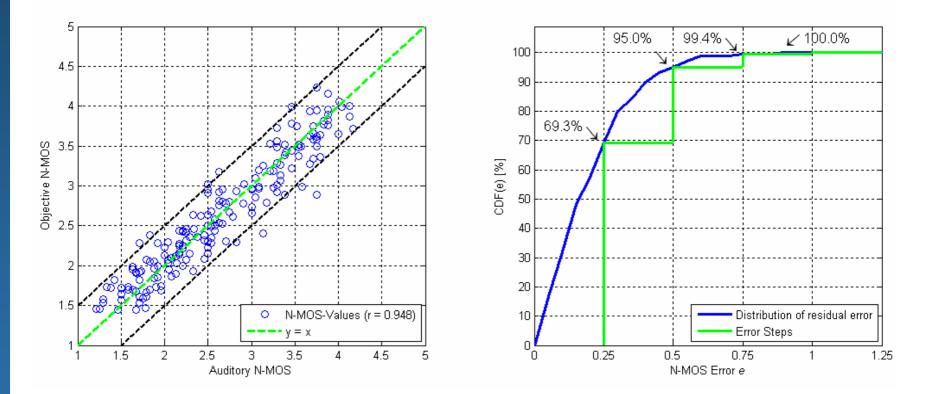
N-MOS calculation is based on:

- Level of processed background noise
- mean and variance of 3D Relative Approach spectrographs of unprocessed and processed signal (during only BGN parts)
- ➤ mean and variance of 3D △ Relative Approach spectrograph: processed – unprocessed signal (during only BGN parts)


Mapping by linear quadratic regression 2

Scalars Vectors Matrices

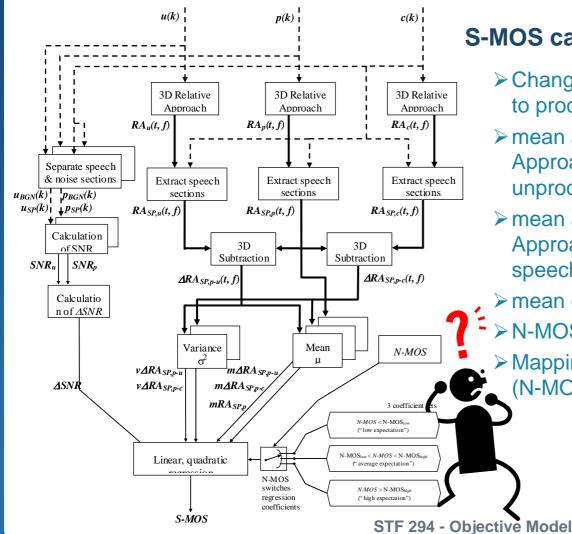
N-MOS – more descriptive...



- ➢ characterization of *changes* in background noise (∆ Relative Approach)
 - mean: amount of similarity, "truthto-original"
 - variance: covers musical tones, modulations ...
- "anchors":
 - characterization of background noise before and after processing (single Relative Approach)
 - level of processed background noise

Calculation works aurally adequate !

N-MOS: objective vs. subjective (French Data)



- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

S-MOS

S-MOS calculation is based on:

- Change of signal to noise ratio (SNR) due to processing (influence of NR, VAD ...)
- \blacktriangleright mean and variance of 3D \triangle Relative Approach spectrograph between unprocessed and processed signal
- \blacktriangleright mean and variance of 3D \land Relative Approach spectrograph between clean speech and processed signal
- mean of processed signal

N-MOS

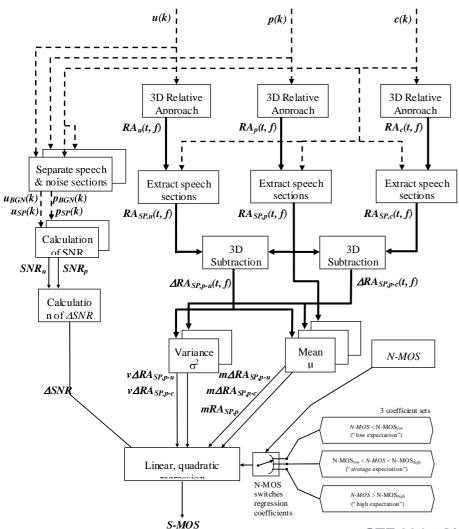
> Mapping by linear quadratic regression (N-MOS defines coefficient set)

S-MOS – more descriptive ...

Analysis of listening test results:

- \rightarrow high influence of SNR on S-MOS for speech transmission out of noisy environments
- → high influence of transmitted background noise on (subjectively) perceived speech quality

high quality of background noise:


- → high expectation to speech quality
- → compare speech quality between clean speech signal (only speech!) and processed signal

low quality of background noise:

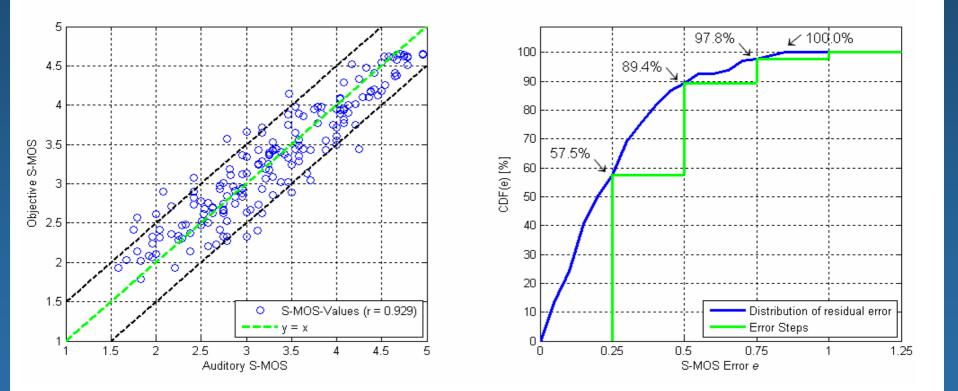
- → low expectation to speech quality
- → compare speech quality between unprocessed speech signal (speech plus background noise!) and processed signal

S-MOS – more descriptive ...

∆ Relative Approach:

- comparison of two speech qualities
- mean: amount of similarity, "truth-tooriginal"
- variance: covers musical tones, modulations ...

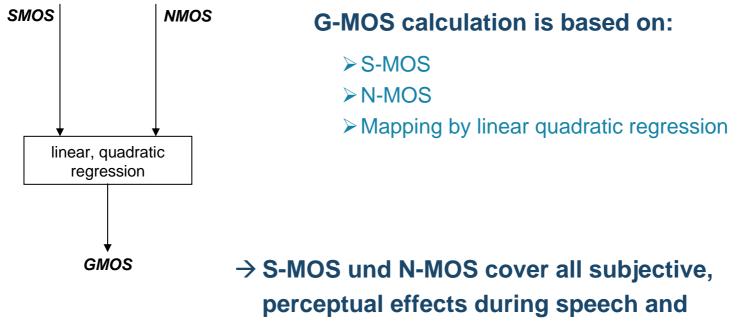
N-MOS:


- determines speech quality expectation
- ➤ weight of comparison:

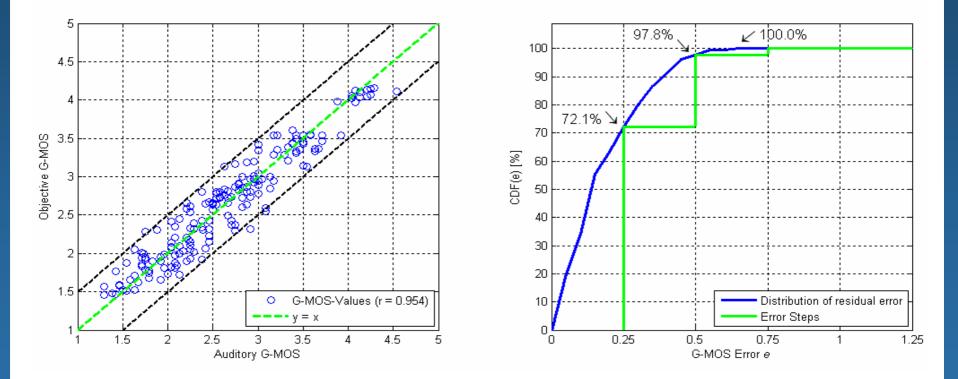
clean speech \leftrightarrows unprocessed

Calculation works aurally adequate !

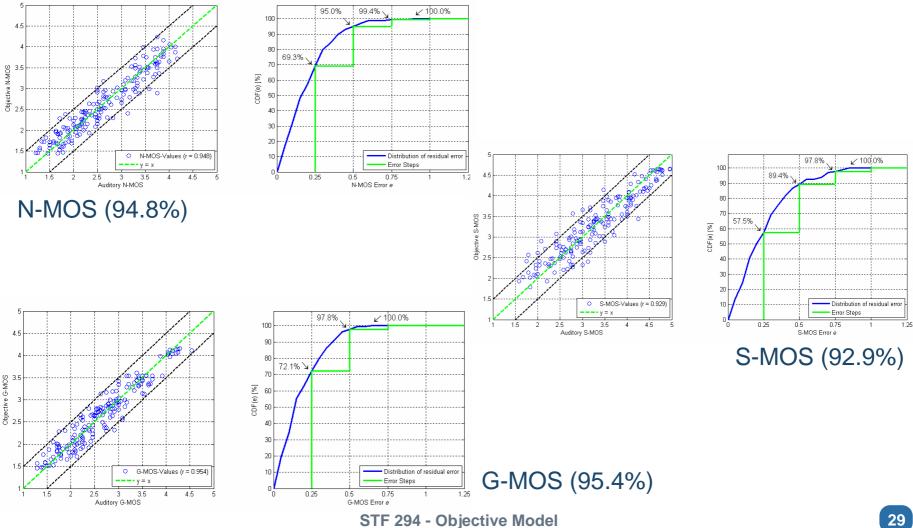
S-MOS: objective vs. subjective (French Data)



- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary


G-MOS

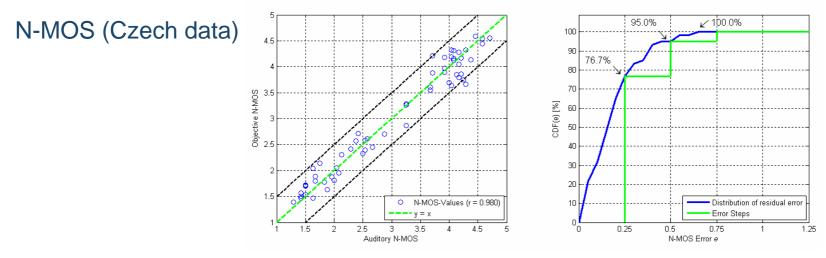
- noise assessment
- \rightarrow simple combination leads to "global" MOS



G-MOS: objective vs. subjective (French Data)

Objective MOS - Summary (French Data)

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

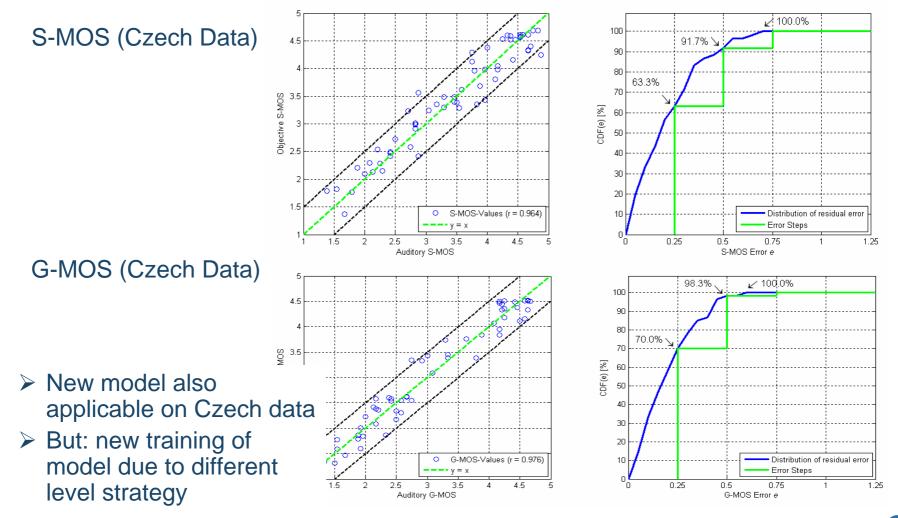

French vs. Czech Data

□ Main difference: level strategy

Assumption: same perceptual processes active during French and Czech listening test

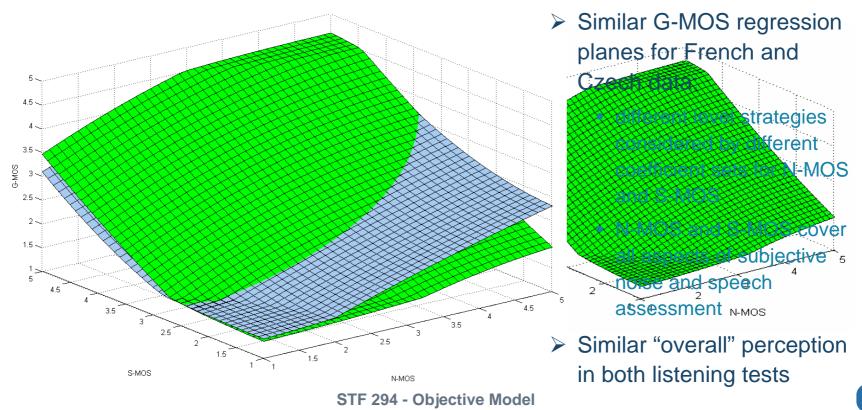
➤ Use same algorithms for S-MOS, N-MOS and G-MOS

- > but: separate training for Czech data \rightarrow Czech regression coefficient set
- ➤ Training uses ALL NI conditions + retained NIII conditions → provide higher numerical stability



STF 294 - Objective Model

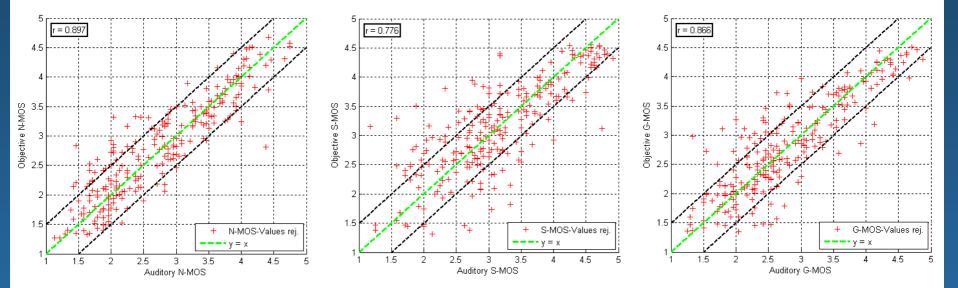
S-MOS / G-MOS: objective vs. subjective (Czech Data)



STF 294 - Objective Model

G-MOS: French vs. Czech

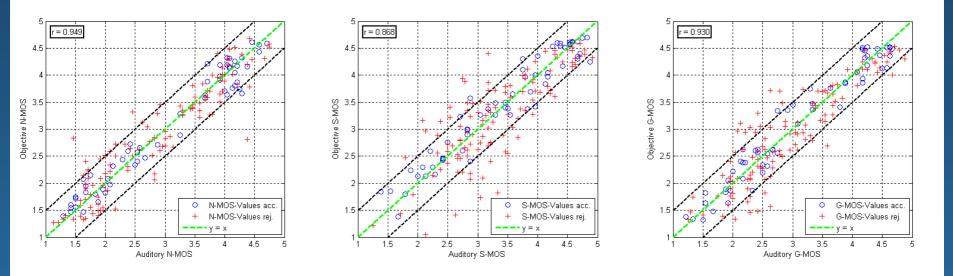

- Check assumption: "same perceptual processes active during French and Czech listening test"
- Compare G-MOS regression planes: G-MOS = f(S-MOS, N-MOS)



Check: Rejected Data (French)

- > Model works in principle also for rejected French data
- correlation for N-MOS and G-MOS > 92%
- > S-MOS calculation more critical, still correlation of 80%

Check: Rejected Data (Czech)



most of the Czech conditions can be assessed by new model
 lower overall correlation due to higher level variations within Czech data

Czech Results: level > 69dB

> rejected with level higher than 69dB and retained Czech data

- correlation for N-MOS and G-MOS > 93%
- S-MOS calculation most critical, still correlation of 86%
- > new model requires "typical" signal levels

- Introduction
- □ Step 1: Expert review of listening test results and data selection
- Step 2: Development of new objective model
 - Purposes of model
 - Principles of Relative Approach
 - > N-MOS:
 - calculation
 - N-MOS: objective vs. subjective
 - > S-MOS:
 - calculation
 - S-MOS: objective vs. subjective
 - ➢ G-MOS:
 - calculation
 - G-MOS: objective vs. subjective
 - Further Analyses
- Summary

Ideas for Future Upgrades

- □ Additional analyses based on Relative Approach
- **Extension to narrowband transmission systems**
- Improvement concerning assessment of jitter and packet loss concealment
 - > only few data with jitter in STF database
 - no packet loss concealment algorithms considered

Enhancement to other transmission codecs (G.729, G.729.1, GSM, CDMA, ...)

۰. ۵

Conclusion

New model able to predict P.835 listening tests – (for moderate level differences within databases)

□ No language dependencies observed

- due to different designs of the listening tests
- due to complex assessment task

□ N-MOS, S-MOS calculation

- \succ uses psycho-acoustic model \rightarrow Relative Approach
- are based on human perception
- > are INDEPENDENT of the specific signal processing (NR, VAD ...) implemented

□ Complex, hearing-adequate calculation of N-MOS and S-MOS allows simple combination to / calculation of G-MOS