ETSI Workshop on Speech and Noise In Wideband Communication, 22nd and 23rd May 2007 - Sophia Antipolis, France

Quality comparison of wideband coders including tandeming and transcoding

Catherine Quinquis (catherine.quinquis@orange-ftgroup.com) France Telecom Research & Development, France

Wideband codecs

 Last year, wideband extensions of narrowband codecs have been standardised

- **G**.729.1
 - providing high packetized wideband voice quality with scalability and interoperability with existing G.729 based VoIP networks and terminals
- EVRC-WB
 - providing wideband in 3GPP2 networks using the same rate set as the current EVRC.
- Other ITU-T wideband codecs
 - **G**.722
 - Mainly used in conference call, but introduced also in VoIP networks
 - G.722.2
 - providing wideband in 3GPP networks (also called AMR-WB)

summary

1 Comparison of Wideband codecs

- G.729.1, G.722 & G.722.2
- EVRC-WB, AMR-WB & VMR mode0
- G.722 PLC
- **2** Impact of transcoding and tandemming
 - Self tandeming
 - transcoding

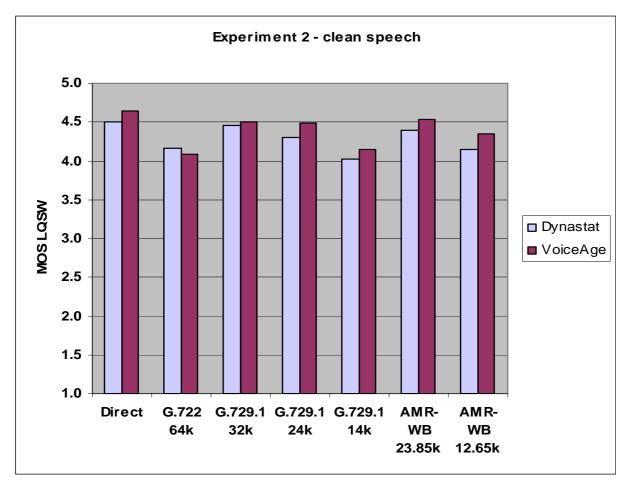
3 Comparison of wideband codecs with narrowband codecs

1

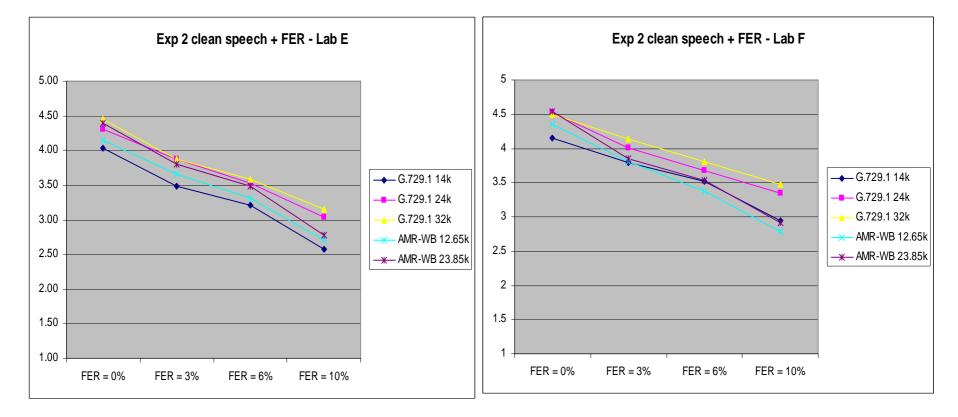
Comparison of Wideband codecs

Compared Subjective WB quality of G.729.1, G.722 & G.722.2

- Extract from the characterisation phase (step 2)
 - Experiment 1
 - narrowband


Experiment 2

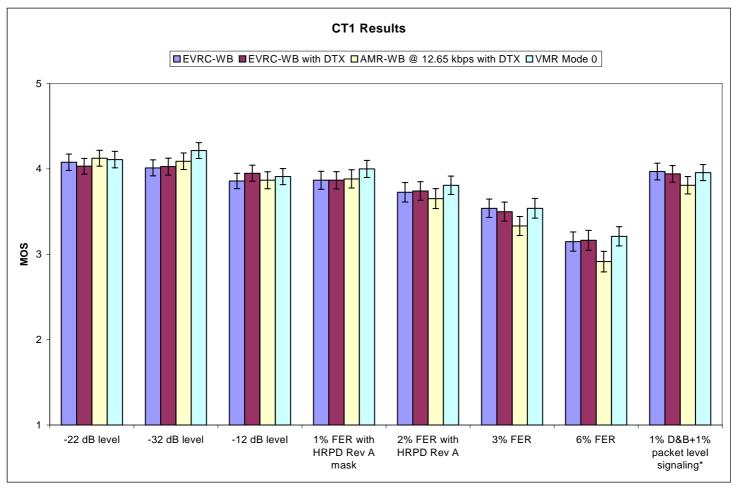
- Purpose : evaluate the performance of G729.1 algorithm with respect to well known references, in wide band clean speech (free of background noise) conditions with a variety of input levels and frame error rates.
- Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
- Languages : French (Canada) & English (US)
- Subjects : 32 naïve listeners


Experiment 3

• Wideband Music

Compared Subjective WB quality of G.729.1, G.722 & G.722.2 (no FER)

Compared Subjective WB quality of G.729.1, G.722 & G.722.2 (FER)


Compared Subjective EVRC-WB quality with AMR-WB and VMR Mode-0

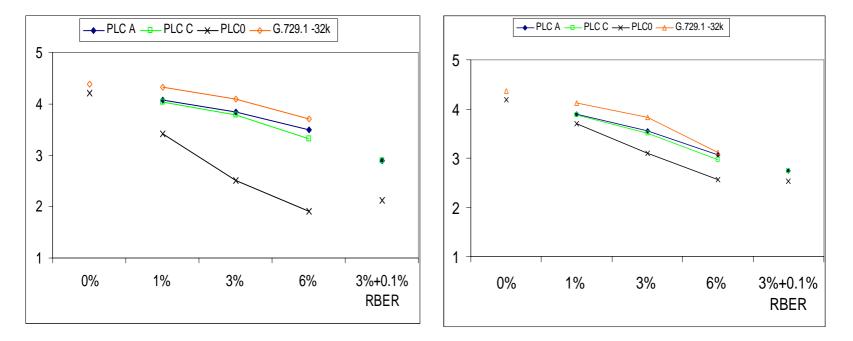
Extract from EVRC-WB Characterization test

Experiment 1

- Purpose : evaluate the performance of EVRC-WB algorithm with respect to well known references, in wide band clean speech (free of background noise) conditions with a variety of input levels and frame error rates.
- Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
- Languages : English (US)
- Subjects : 32 naïve listeners
- Experiment 2
 - Purpose : evaluate the performance of EVRC-WB algorithm with respect to well known references, in wide band noisy speech, and VAD/DTX scheme
 - Methodology : P.835
- Experiment 3 & 4
 - Narrowband

Compared Subjective EVRC-WB quality with AMR-WB and VMR Mode-0

Quality comparison of wideband coders including tandeming and transcoding -p 9


Performance of G.722 with packet loss concealment

- Extract from G.722 PLC Selection test
 - Experiment 1a &1b
 - Purpose : evaluate the performance of PLC algorithm with respect to well known references, in wide band clean speech (free of background noise) conditions with a variety of frame error rates (random for exp1a, burst for exp 1b).
 - Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
 - Languages : Japanese, French & English (US)
 - Subjects : 32 naïve listeners
 - Experiment 2a &2b
 - Purpose : evaluate the performance of PLC algorithm with respect to well known references, in noisy speech, (random for exp2a, burst for exp 2b).

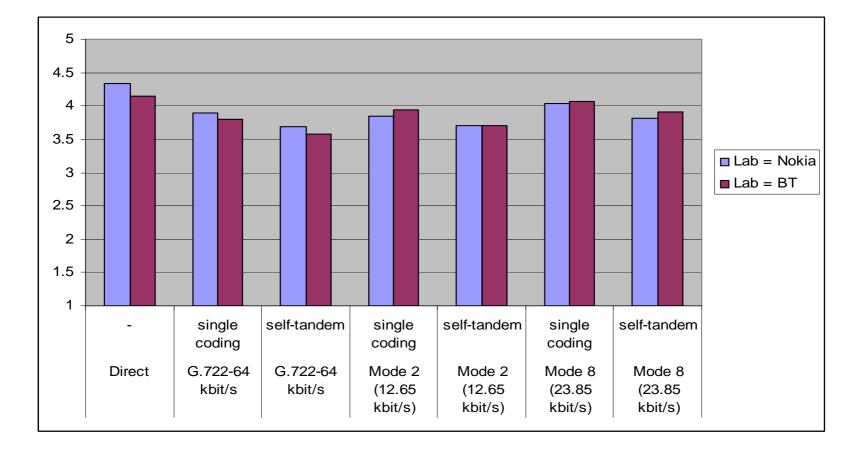
Performance of G.722 with packet loss concealment

Clean peech, Random FER

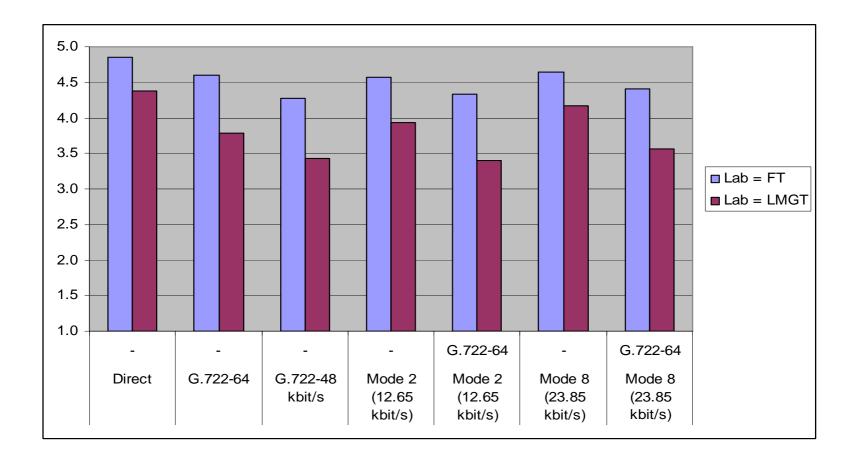
Clean speech, Bursty FER

Conclusion on Wideband Quality

- All these codecs provide high wideband quality that can be roughly divided into 2 categories:
 - Maximum wideband quality for the most recent codecs at their maximum bit rates: very close to "direct" quality in the test conditions
 - Slightly lower quality for these codecs when operating at reduced bit rates around 12-14 kbit/s and for G.722 at 64 kbit/s but for much reduced complexity


Impact of transcoding and tandemming

Impact of transcoding/tandeming G.722.2 & G.722


Extract from the characterisation phase of AMR-WB

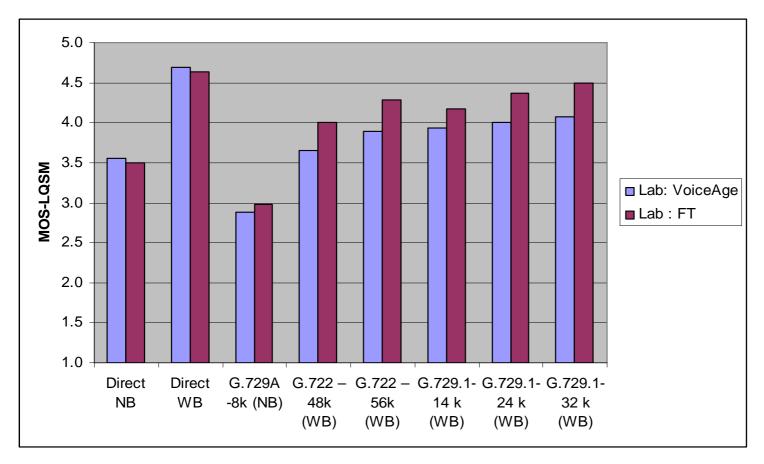
- Experiment 1
 - Purpose : evaluate the performance of AMRWB algorithm, in wide band clean speech (free of background noise) tandeming conditions with a variety of input levels.
 - Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
 - Languages : Finnish & English
 - Subjects : 32 naïve listeners
- Experiment 2
 - Purpose : evaluate the performance of AMRWB algorithm, in wide band clean speech (free of background noise) conditions in transcoding with other wideband standards
 - Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
 - Languages : French & English (US)
 - Subjects : 32 naïve listeners

Compared Subjective WB quality of G.722 & G.722.2 in self tandeming

Compared Subjective WB quality of G.722 & G.722.2 in transcoding

Conclusion on tandemming and transcoding

- Codecs self tandemings produce quite limited quality degradations of around 0.2 MOS-LQSW.
- Transcodings between different wideband formats produce more significant degradation :
 - G722↔AMR-WB transcoding quality score 0.2 to 0.4 MOS-LQSW below G.722 64 k quality.



Comparison od wideband codecs with narrowband codecs

Comparison of wideband codecs with narrowband codecs (1)

- Extract from the G.729.1 characterisation phase (step1)
 - Experiment 1a
 - Narrowband
 - Experiment 1b
 - Purpose : evaluate the performance of G.729.1 algorithm, in wide band clean speech (free of background noise) with a variety of input levels.
 - Methodology : Absolute Category Rating (ACR) method with the Mean Opinion Score (MOS) rating scale for WB subjective tests (MOS-LQSW).
 - Languages : French & English (US)
 - Subjects : 32 naïve listeners

Comparison of wideband codecs with narrowband codecs (2)

Conclusion WB versus NB

- Results show that wideband voice, even coded at the lowest bit rates of G.722 (48 kbit/s), gets better score than direct narrow band quality with a gap up to +0.5 MOS-LQSM
- MOS-LQSM difference between narrow band and wideband direct speech is greater than 1 MOS-LQSM and remain between 0.5 MOS-LQSM and 1 MOS-LQSM between direct narrow band and high quality wideband coded speech.

References

- G.729.1 Characterization step 2 references
 - ITU-T-SG12-TD42rev3(WP1/12), "G.729EV Characterization phase step 2 Quality Assessment Test Plan ", Source: Rapporteur for Question 7/12, Geneva, 5-13 June 2006
 - ITU-T-SG16-TD258(GEN/16), "LS on testing issues", Source: Rapporteurs Q7/12, Geneva, 14 24 November 2006
 - ITU-T-SG16-TD258(GEN/16)-Attachment 2, " Executive summary of G729.1 Characterisation step 2– Experiments 1, 2 & 3. ", Source: France Télécom, Geneva, 14 - 24 November 2006
- G.729.1 Characterization step 2 references
 - ITU-T-SG12-TD22rev2(WP1/12), "G729EV Characterisation/Optimisation step1 Test plan ", Source: Rapporteur for Question 7/12, Geneva, 17-21 October 2005
 - ITU-T-SG16-TD202(GEN/16), "LS on audio issues ", Source: Rapporteurs Q7/12, Geneva, 3 13 April 2006
 - ITU-T-SG16-TD202(GEN/16)-Attachment 1, "G729EV Characterisation/Optimisation step1: Summary of results ", Source: France Télécom, Geneva, 3 - 13 April 2006
- AMR-WB Characterization references
 - ETSI TR 126 976 V6.0.0 (2004-12), "Performance characterization of the Adaptive Multi-Rate Wideband (AMR-WB) speech codec",
 - Tdoc S4 (01)0351R1, "AMR Wideband Characterisation Phase 1 Listening Tests, Experiment 1 BT Results", Source: BT, June 4-8, 2001, Naantali, Finland
 - Tdoc. S4 (01)0326, "Executive Summary from France Télécom R&D for the ETSI AMR-WB Characterisation Phase Results for Experiments 2 & 5", Source: France Telecom, June 4-8, 2001, Naantali, Finland
 - Tdoc S4 (01)0321, "AMR WB Characterization Experiments 2A and 6A LMGT Results ", Source: LMGT, June 4-8, 2001, Naantali, Finland
 - Tdoc S4-010353, "Nokia report for AMR-WB characterisation experiments 1A & 6B ", Source: Nokia, June 4-8, 2001, Naantali, Finland
- EVRC-WB Characterization references
 - ITU-T-SG16-TD291(GEN/16) "Updated LS reply on follow-up on embedded extension to G.722.2 and media coding summary database "Source: Chairman SG 16 (on behalf of 3GPP2 TSG-C) Geneva, 14 - 24 November 2006
- G.722 Packet Loss Concealment references
 - ITU-T-SG16-TD217(WP3/16), "Report of Question 10/16 "Software tools for signal processing standardization activities and maintenance and extension of existing voice coding standards", Source: Rapporteur for Question 10/16, Geneva, 14 - 24 November 2006Extract from the G.729.1 characterisation phase (step1)