

Systems for Improvement of the Communication in Passenger Compartments

Tim Haulick/ Gerhard Schmidt thaulick@harmanbecker.com

ETSI Workshop on Speech and Noise in Wideband Communication 22nd and 23rd May 2007 – Sophia Antipolis, France

In-Car Communication

HARMAN/BECKER AUTOMOTIVE SYSTEMS

Passenger compartment

*Acoustic loss (referred to the ear of the driver)

Current Situation:

- Communication between passengers is difficult, because of the acoustic loss (especially front to back
- Front passengers have to speak louder than normal
 longer conversations will be tiring
- Driver turns around road safety is reduced

Solution:

 Improve the speech quality and intelligibility by means of an intercom system

Application:

- Mid and high class automobiles, which are already equipped with the necessary audio and signal processing components
- Vans, etc. \rightarrow systems with reduced quality

Configurations

One-Way System

- 2-4 microphones
- 2-4 loudspeakers

Two-Way System

- 4-8 microphones
- 6-8 loudspeakers

Directionality of the Human Mouth

- A human mouth does not emit sound with equal intensity in all directions
- The lower the frequency the less developed is the reduction of sound intensity by the mouth

Consequences:

- It is more important to support front-to-rear communication
- It might be sufficient to install only "one-way" intercom systems

average directionality of the human mouth

In-Car Measurements

H A Harman International Company

Transfer functions

- Mouth reference point (driver) \rightarrow Left ear of the front passenger
- Mouth reference point (driver) → Left ear of the passenger behind the front passenger

Acoustic loss referred to the left ear of the front passenger: 5 – 15 dB

4 May 2007

Page 5

Haulick/ Schmidt

© Harman/Becker

Automotive Systems

System Requirements

- The passengers should not be aware of the system.
- Speaker localization should be preserved by the system.
- System stability has to be guaranteed.
- The in-car communication system has to be realized on existing hardware (e.g. hands-free-system/ speech-dialog-system).

Problems in a Real System

 At medium to large output gain the acoustic situations starts becoming "diffuse", i.e. spatial localization is not possible any more.

- At large output gain visual and acoustic sensation do not fit any more (driver is visually located in front of the rear passengers but acoustically behind the rear passengers) – very irritating for a few people.
- At very large output gains the system will become instable (without signal processing).
- In case of too large system delay the signals sound reverberant ("bathroom atmosphere") and the speaking passengers will be aware of their own echo.

Algorithmic Overview

Algorithmic Structure for Direction Front \rightarrow Rear:

Problems and Challenges:

- Stability
- System delay
- Correlation of excitation and distortion

Evaluation of System Performance

Subjective Evaluation Methods

- Speech Quality Tests (Comparative Mean Opinion Score Tests CMOS)
- Speech Intelligibility Tests (Diagnostic and Modified Rhyme Tests DRT/ MRT)

Objective Evaluation Methods

- System Gain
- Frequency Response Evaluation
- Impulse Response Evaluation

Subjective Evaluation

- Prerecorded speech examples with different Lombard levels were played back via an artificial mouth
- Binaural recordings were made by means of a HEAD acoustics NoiseBook on the seat behind the driver

HARMAN/BECKER AUTOMOTIVE SYSTEMS

Driving Scenarios

0km/h beside motorway

Haulick/ Schmidt

130km/h on motorway

Subjective Evaluation / CMOS

Results of the Comparison Mean Opinion Score (CMOS) Test (25 signal pairs for each driving situation / 15 listeners per scenario):

- 0 km/h, vehicle parked close to a motorway:
- 19.7 % prefer the system to be switched off
- 29.7 % have no preference
- 50.6 % prefer an activated system

130 km/h, motorway:

- 4.3 % prefer the system to be switched off
- 7.1 % have no preference
- 88.6 % prefer an activated system

Results of Modified Rhyme Tests (MRT)

(48 utterances were presented to each listener per driving situation):

0 km/h, vehicle parked close to a motorway:

- No significant difference (95.2 % system off versus 95.0 % system on)
- Due to the automatic gain adjustment the intercom system operates with only very small gain at these noise levels

130 km/h, motorway:

- Significant improvement of the MRT error rate
- Nearly 50 % error reduction (85.4 % correct answers increased to 92.2 % correct answers)

Haulick/ Schmidt

Objective Evaluation I

Measuring of the frequency response with deactivated and activated intercom using two artificial heads:

- Evaluation of system gain in dependence of the frequency
- Measurement should be performed at different driving speeds
- Requires the possibility to activate and deactivate the intercom system

response between MRP and ear of the driver

Objective Evaluation II

 Speaking person might be annoyed by listening to echo components

Detection of audible echoes by means of the measured frequency

- The later the echoes arrive the more annoying they are
- Audible echoes can be detected by comparing the slope of the impulse response with predefined thresholds

Haulick/ Schmidt

