

ETSI STQ Workshop "Compensating for Packet Loss in Real-Time Applications", Feb 2003

VoIP on WLAN, QoS issues and VoIP specifics

Alan Duric Sen. Systems Architect SIP/email: alan.duric@globalipsound.com

Agenda

- 802.11 standards overview
- Wireless QoS principles
- The draft 802.11e standard supplement
- Current situation and lessons from the past
- Summary

Introduction

- IEEE 802.11 wireless networking is the foundation for a whole new class of mobility and application scenarios
- The WLAN industry is in the midst of an exponential growth and as well in the midst of a transition (and turmoil) from 802.11b (Wi-Fi) and 802.11a (Wi-Fi5)

802.11 overview

Top-down perspective

802.11 standards

higher	supplements 802.11c and 802.11f
802.11 MAC	supplements 802.11d, 802.11e, 802.11i and 802.11h
802.11 PHY	supplements 802.11a, 802.11b and 802.11g

802.11 Stds and WGs

- 802.11a 5GHz OFDM PHY layer
- 802.11b 2.4GHz CCM PHY layer
- 802.11c bridging tables
- 802.11d international roaming
- 802.11e quality of service
- 802.11f inter-access point protocols
- 802.11g 2.4GHz OFDM PHY
- 802.11h European regulatory extensions
- 802.11i enhanced security

802.11 stds (trends) overview

Techincal summary 802.11a/b/g

- 802.11a
 - MAC Layer: Same CSMA/CA MAC as 802.11b
 - Modulation: Orthogonal Frequency Division Multiplexing (OFDM)
 - 20 MHz channels, multi-carrier
 - RF: UNI-II and ISM bands
- 802.11b
 - MAC Layer: Same CSMA/CA MAC as 802.11a
 - Modulation: Complementary Code Keying (CCK)
 - 22 MHz channels, single-carrier
 - RF: ISM bands (2.4 GHz)
- 802.11g
 - MAC Layer: Same CSMA/CA MAC as 802.11b
 - Modulation: Complementary Code Keying (CCK) and Orthogonal Frequency Division Multiplexing (OFDM)
 - 22 MHz channels, single-carrier (CCK) and multi-carrier (OFDM)
 - RF: ISM bands (2.4 GHz)

802.11 standard & supplements summary

- Base standard divided into two layers
 - medium access control (MAC) layer
 - physical (PHY) layer
- Standard supplements extend one of these layers or provide higher layer functions
- Supplements at different layers can be intermixed
 - 802.11e applies to 802.11b, 802.11a and 802.11g

Wireless QoS Principles

Wireless QoS Principles

- What works in a wired network doesn't necessarily work in a wireless network
 - too many broken assumptions
- System aspects
 - division of functions across layers
 - application expectations

Wireless QoS Principles

- Many previous attempts at WLAN QoS (and non-QoS channel access schemes), show that strategies that work well in a wired environment don't translate to WLAN
- Things that break assumptions:
 - Packet error rate can be in the range 10 20%
 - Bit rates vary according to channel conditions you can't do a bandwidth reservation at connection setup time and expect it to stick
 - The "rubber pipe problem" a bandwidth manager doesn't know how much bandwidth it has to manage, since a neighboring, unrelated bandwidth manager can take some of it at any time

• Questions:

- what does "guaranteed QoS" mean in a system with a 20% packet error rate?
- what does "connection admission control" mean in an unlicensed RF band?

CBR traffic in a wireless LAN

- Multimedia traffic is frequently modeled as predictable, constant bit rate
 - but CBR traffic acquires a significant bursty component in the presence of packet errors that force retries
 - constant slot allocation strategy alone does not work well any more

The draft 802.11e standard supplement

System aspects

- Not all functions need to be contained in the MAC layer
 - 802.11e targeting Ethernet equivalence
 - connection admission control considered a higher layer problem
 - MAC needs only to provide priority separation
- Different applications make different assumptions about connection admission control
 - 802.11e trying to target all of these applications

Division of functions accross layers

- MAC layer can only see its own network segment
- Connections are end to end, and not in the domain of the MAC
- Packets that are part of a stream are labeled with a priority and passed to the MAC

Example of usage

- Voice call is highest priority, gets lowest latency
- Video is next priority, will get sufficient bandwidth if it is there
- Data will get whatever bandwidth is left over

Implications for 802.11e

- 802.11e must support 802.1D priority marking
 makes its behavior identical to Ethernet
- 802.11e cannot assume that RSVP is present
 - but can be designed to take advantage of additional information if it is there

Application of 802.11e

Focus on two usage models:

- IP-based multimedia
 - Streaming protocols such as RTP/RTCP
 - Applications have been built on the assumption of very little guarantee of service from the network
 - Robust to sudden changes built in adaptability
 - Require only on 802.1D-based priority, where available
 - Seamless bridging across Ethernet and 802.11
- 1394 over 802.11a
 - Proposals under discussion in 1394 wireless working group
 - May run directly over the 802.11e MAC, or using IP encapsulation
 - Seamless interworking between 1394 and 802 LANs, particularly 802.11 is required
 - Attach PC and other IP devices to the 1394 bus
 - No brainer installation and configuration

Issues with 802.11e

- Not efficient for adhoc networks when load increases
- EDCF parameters are difficult to set (static) and can cope with change of conditions on the network
- EDCF is backwards compatible to DCF making it practicaly useless when DCF nodes present
- Collision number increases with increased number of stations (severely decreases network throughput and increases latency/jitter)

Lessons from the past and current situation

Previous Attempts for QoS on WLAN

• Hiperlan 1 (EY-NPMA)

- early (1996) fully distributed prioritized scheme
- focused on time bounds rather than 802.1p-style flow separation
- theoretically highly efficient and delivers on time bounds, but fragile in presence of errors and hidden stations

• Hiperlan 2 (Wireless ATM)

- fully centralized all scheduling pushed to the AP, which broadcasts time allocation for each 2ms superframe
- theoretically highly efficient, given a perfect scheduling algorithm (nearly all publicly available papers assume this)
- efficiency drops dramatically in adverse (bursty) traffic conditions, because efficiency is dependent on ability of scheduler to predict requirements
- immensely complex

Previous Attempts ... ctd

• HomeRF (DECT/802.11)

- combines CSMA/CA for data, slots with retransmission for voice
- works well within stated objectives efficient data transfer, good for voice, but not quite for video etc.
- let down by inadequate PHY layer

Issue with Frequencies

- 2.4 GHz ISM band is very congested
 - Everything from 2.4 GHz phones to microwave ovens to Bluetooth 1.1 transmit here
- 802.11a in the 5 GHz frequency band is a primary or co-primary user
 - Shared with navigation and satellite equipment, not other consumer equipment
 - Designed for wideband transmissions as opposed to narrowband (phones, garage door openers, etc.)
 - No guarantees it will stay this way; still unlicensed spectrum
- Reduces concerns over "co-existence" issues
 - 5 GHz is the best place for Radio LANs

Bonus Material - 802.11 at home

Bonus Material - 802.11 at home -issues

_ 🗆 ×

s=32 time=2ms TTL=127 s=32 time=3ms TTL=127 s=32 time=3ms TTL=127 s=32 time=5ms TTL=127 s=32 time=5ms TTL=127 es=32 time=10ms TTL=127 es=32 time=132ms TTL=127 s=32 time=2ms TTL=127 s=32 time=3ms TTL=127 s=32 time=2ms TTL=127 s=32 time=7ms TTL=127 s=32 time=4ms TTL=127 s=32 time=4ms TTL=127 s=32 time=8ms TTL=127 s=32 time=6ms TTL=127 s=32 time=4ms TTL=127 s=32 time=2ms TTL=127 s=32 time=7ms TTL=127 s=32 time=5ms TTL=127 s=32 time=2ms TTL=127 s=32 time=2ms TTL=127 s=32 time=2ms TTL=127 s=32 time=17ms TTL=127 s=32 time=3ms TTL=127 s=32 time=2ms TTL=127 s=32 time=2ms TTL=127 s=32 time=2ms TTL=127 s=32 time=13ms TTL=127 s=32 time=7ms TTL=127 s=32 time=4ms TTL=127 s=32 time=11ms TTL=127 s=32 time=11ms TTL=127 s=32 time=2ms TTL=127 s=32 time=4ms TTL=127

2.1:

vived = 42, Lost = 3 (6% loss), in milli-seconds: 132ms, Average = 7ms

1

🥵 Airo	Peek NX Demo - [Ca	apture 1]										_ @ X	1		
SA Fle	Edit View Capture	Statistics Tools Windo	w Help									_ # ×	đ		
0.0		0 4 2 7 2 8 🗖	M 9 →												
Packets	eceived: 64 M	lemoty usage: 1%	es et els									Start Capture	C:\WIND	OWS\System32\cn	nd.ex
Packeta			packets	_									Reply from	192.168.2.1	by
Backet		Destination	Beelo		Data Bata	Chan	fignal 1	lane fire	Absolute Time	Protocol		Even	Reply from	192.168.2.1	by
FACKEL	7C:32:B2:2E:	93:FE:28:8C:	E6:02:83:8	86:	11.0	10	309	*C 64	02:32:27	802.11 Beacon	Sommary	Expe	Request to	imed out.	
2	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	215	- 64	02:32:27	802.11 Beacon	FC=, SN=2806, FN= 0, BI=100,	8	Reply from	192.168.2.1:	by
3	00:02:83:86:	Broadcast	00:02:83:4	64:	11.0	10	215	*C 64	02:32:27	802.11 Beacon			Reply from	192.168.2.1	by
4	00:02:B3:86:	Broadcast	00:02:B3:0	45.	11.0	10	218	*C 64	02:32:27	802.11 Beacon			Reply from	192.168.2.1	by
6	00:02:D3:86:	Broadcast	00:02:03:0	06:	11.0	10	27%	+0 64	02:32:27	802.11 Beacon	A DATABASE OF THE CONTROL OF		Reply from	192.168.2.1	by
7	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	245	* 64	02:32:27	802.11 Beacon	FC=	8	Reply from	192.168.2.1	by
8	00:98:B6:D2:	EB:C8:EB:20:	07:E0:15:5	50:	11.0	10	30%	CW 64	02:32:20	802.11 Frag			Replu fro	192.168.2.1	but
9	77:02:B3:86:	FF:FF:FF:FF:	00:02:B3:8	86:	11.0	10	245	•C 64	02:32:28	802.11 Beacon	P2= 01=2014 P1= 0 07=100		Replu from	192 168 2 1	hu
11	00:02:83:86:	Broadcast	00:02:83:8	861	11.0	10	248	* 64	02:32:20	802.11 Beacon	FC=	8	Reply from	192 168 2 1	but
12	00:02:B3:86:	Broadcast	00:02:83:8	86:	11.0	10	214	+ 64	02:32:28	802.11 Beacon	FC=	8	Reply from	192.100.2.1	but
13	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	21%	- 64	02:32:28	802.11 Beacon	FC=	a	Reply from	- 102.100.2.1	by
14	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	214	* 64	02:32:28	802.11 Beacon	FC=, SN=2818, FN= 0, BI=100,	8	Reply from	1 152.166.2.1	by
15	00:02:B3:86:	PP.PP.PP.PP.	00:02:83:8	85	11.0	10	218	- 64 +C 64	02:32:28	802.11 Beacon	FC=	3	Reply from	1 192.168.2.1	by
17	00:02:03:86:	Broadcast	00:02:03:0	06:	11.0	10	245	+0 64	02:32:28	802.11 Beacon			Request t	.med out.	
18	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	249	*C 64	02:32:29	802.11 Beacon			Reply from	192.168.2.1	by
19	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	21%	• 64	02:32:29	802.11 Beacon	FC=, SN=2823, FN= 0, BI=100,	8	Reply from	192.168.2.1	by
20	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	249	• 64	02:32:29	802.11 Beacon	FC=, SN=2824, FN= 0, BI=100,	3	Reply from	192.168.2.1	by
22	00:02:83:86:	Ercadcast	00:02:83:0	861	11.0	10	245	+C 64	02:32:29	802.11 Beacon	FC		Replu fro	192.168.2.1	but
23	00:C2:DF:86:	Broadcast	00:02:83:	7A:	11.0	10	249	*C 64	02:32:29	802.11 Beacon			Replu from	192,168,2,1	bu
24	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	245	• 64	02:32:29	802.11 Beacon	FC=	s	Reply from	192 168 2 1	hu
25	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	27%	* 64	02:32:29	. 802.11 Beacon	FC=	8	Reply from	102.100.2.1	bu
26	00:02:B3:86:	Broadcast	00:02:B3:0	86:	11.0	10	24%	*C 64	02:32:29	802.11 Beacon	P/2= PM=2021 PM= 0 B7=100		Repig from	- 102.100.2.1	- bg
20	00:02:03:86:	Broadcast	00:02:83:0	16:	11.0	10	245	4 64	02:32:29	802.11 Beacon	FC=	5 0	Reply Tro	1 192.168.2.1	by
29	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	27%	* 64	02:32:30	802.11 Beacon	FC=	8	Reply from	1 192.168.2.1	by
30	00:02:B3:86:	Broadcast	00:02:83:0	86:	11.0	10	30%	* 64	02:32:30	802.11 Beacon	FC=	ä	Reply from	1 192.168.2.1	by
31	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	279	• 64	02:32:30	802.11 Beacon	FC=	3	Reply from	192.168.2.1	by
32	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	276	- 64	02:32:30	802.11 Beacon	FC=, SN=2836, FN= 0, BI=100,	d	Reply from	192.168.2.1	by
34	CE:5F:58:75:	9D:B3:FF:b8:	16:02:83:6	86	11.0	10	304	*C 64	02:32:30	802.11 Beas	re	****	Reply from	192.168.2.1	by
35	17:34:B2:EC:	B3:FF:FF:31:	00:63:E6:8	87:	11.0	10	32%	*C 64	02:32:30	802.11 Beacon			Replu fro	192.168.2.1	bu
36	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	30%	* 64	02:32:30	802.11 Beacon	FC=	8	Replu from	192 168 2 1	but
37	00:02:B3:86:	Broadcast	00:02:B3:0	86:	11.0	10	275	- 64	02:32:30	802.11 Beacon	FC=, SN=2841, FN= 0, BI=100,	3	Peplu from	192 168 2 1	bu
38	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	30%	* 64	02:32:31	802.11 Beacon	FC=	8	Reply from	192.100.2.1	bu
40	00:02:B3:86:	Broadcast	00:02:83:8	86:	11.0	10	275	* 64	02:32:31	802.11 Beacon	FC=	8	Repig from	- 102.100.2.1.	bg
41	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	278	• 64	02:32:31	802.11 Beacon	FC=	8	Reply from	1 192.166.2.1	by
42	00:02:B3:86:	Broadcast	00:02:B3:8	86:	11.0	10	279	* 64	02:32:31	802.11 Beacon	FC=,SN=2846,FN= 0,BI=100,	8	Reply from	1 192.168.2.1	by
43	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	27%	* 64	02:32:31	802.11 Beacon	FC=, SN=2847, FN= 0, BI=100,	8	Reply from	192.168.2.1	by
49	00:02:83:86:	Broadcast	0010218310	861	11.0	10	249	* 64	02:32:31	802.11 Beacon	FC=	8	Reply from	1 192.168.2.1	by
46	00:02:D3:86:	Broadcast	00:02:B3:8	86:	11.0	10	249	+ 64	02:32:31	802.11 Beacon	FC=	5	Reply from	192.168.2.1	by
47	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	215	+ 64	02:32:32	802.11 Beacon	FC=	8	Reply from	192.168.2.1	by
48	00:02:B3:86:	Broadcast	00:02:B3:0	86:	11.0	10	245	+ 64	02:32:32	802.11 Beacon	FC=	3	Reply fro	192.168.2.1	but
49	00:02:83:86:	Broadcast	00:02:83:8	86:	11.0	10	245	• 64	02:32:32	802.11 Beacon	FC=BN=2853,FN= 0,BI=100,	See	Replu fro	192.168.2.1	bul
1 20	00:02:03:00:	Broadcast	0010218310		11.0	10	673	-0 04	V2:32:32	evz.11 Beacon		3	Replu from	192 168 2 1	but
Packets	(Nodes) Protocols)	Size & Summary & History &	Channels & Log	λ Expert	Peer Map & Fille	s/							- Heprey Ho		
Tello.	1		N- 2	1-1-1	(Dickate: 64 Duration:	00:00:06	Dine stati	otion for 191	1.0
tote			11			_					Packets. 64 Ouradon.	00.00.06	Ping Stat.	Stits for 152	
11	10 10		Messages:	6	0 6	0	▲ 0	0					Packe	.s: sent - 45.	Rec
50	10 to 10 to 10 to 10	X 100 X	Date	Time	Message		- Martin	Contract of				1	Hpproxima	e round trip	CIM
	· 100 · · · · · ·	11-1 · · · ·	02/10/	02 29 43	New capture								Minim	um = 2ms, Maxi	mum
20	utilitation .	datsh 10 amonth	02/10/	02 30 29	New capture								Control-C		
			02/10/	02 32 02	AITOPEEK NX DEL	no quit							C		
1.00	a l'atalua l		0 02/10/	02 32 24	New capture	and and the fi									
BICau	e V value		C. C									X	1		
For Help,	press F1									11) (lisco Systems 340 Series PCMCIA Wireless LAN Adapt	ar Channel: 10	1		

GLOBAL IP SOUND

Internal test results

GIPS VoiceEngine[™] - PPC

Acoustic Echo Supression (AES)

Features

- Interoperability with different speech coders
- Handle both 8kHz and 16kHz sampled signals
- Suitable for small devices like PDAs
 - Play out and recording speech flows are not required to be synchronized
 - Can handle changing delay caused by soundcards and drivers in the PDA
 - Low complexity
- Comfort noise insertion
- High level API
- ITU G.167 compliant

Summary

- WLAN is ubiquitous technology and as well brings some ubiquitous QoS issues
 - If I run VoIP over WLAN at home, whose going to guarantee me QoS level?
- Usage of technology that can deal with some of WLANs intrinsic imperfections (or ones who are operating it) can accelerate its wide acceptance

Memory in kWord16