

Speech Quality in Cellular Networks

Analysis and Modeling of Structures in Telephony Conversations

2nd Workshop on Wideband Speech Quality in Terminals and Networks: Assessment and Prediction

22nd and 23rd June 2005 - Mainz, Germany

Jens Berger SwissQual AG, Zuchwil, Switzerland <u>jens.berger@swissqual.com</u>

Overview / Content

- Limitations of today's QoS benchmarking systems
- Do test calls model human conversations?
- Statistical analysis of real live calls

- Modeling conversations and open issues
- Focus on modelling conversations and not to the measures to be applied on

SwissQual What's about Call Quality

Quality Evaluation in Cellular Networks

- Today's Quality Benchmarking Systems are focussed on one-way transmission 'Listening Quality' by establishing Mobile-to-PSTN test calls
- Networks will be evaluated with clean speech under ideal terminal conditions(*)
- Length of speech utterances are variable from 3 ... 30s and more
- 'Nobody' cares about background noises, signal delay and double talk capability
- Test calls are concatenated test sequences only but not a 'model of a conversation'
- * In EFR equipped networks under good coverage conditions an LQ of >3.9 will be reached normally. Is this real?

SwissQual What's about Call Quality

Quality Evaluation in Cellular Networks

- How is the structure of a typical mobile call?
 - Duration
 - Number and length of utterances
- What's about noise and its different handling?
- How is the double talk behaviour?
- Ist step: How to model a call / conversation?
- 2nd step: Which measures can be applied?

Call Origination

Statistical Analysis of Call Origination

- Investigation was made in 2004
- Evaluation of approx. 5000 calls in European cellular networks
- More than 50% of the calls were originated by the mobile subscriber (MOC)
- More than 50% of them are Mobile to Mobile calls (incl. mobile voice boxes)

Call Duration

Statistical Analysis of Call Duration

Call Duration Time (CDT) is highly dominated by short calls below 60s

Average Call Duration Time 90 s

- Median Call Duration Time 40 s
- Shorter than 3 min

SwissQual

Short calls are dominated by MOC

Call Duration

Statistical Analysis of Call Duration

- Short calls are dominated by mobile originated calls (MOC)
- Mainly they contains 'normal conversation' between two human partners...
- ... but they also cover

- 'speed dials' to the own mobile voice box and requests to the pre-paid account
 Average CDT of speed dials: only 21s!
- calls to voice boxes 'at the far end'
- unexpected fax and data modems at the far end
- Calls originated by the far end side contains only 'normal conversation' between two human partners
- Within 'speed dial' and unwanted voice boxes (>70%) shows NO speech activity in uplink!

Call Duration

Target: Modelling of real conversations

- Exclusion of speed dials and unwanted voice boxes
- Average Call Duration Time increases to 100 s
- Median Call Duration Time increases to
 45 s
- Way: Evaluation of typical human telephone conversation
- 1. Selection of 50 'typical' 35s ... 60s calls
- 2. Number of interactions between partners
- 3. Duration time of meaningful utterances
- 4. Double talk situations

Conversational Aspects

Interactions between partners (35 ... 60s calls)

- Initial 'Hello' and final 'Good Bye' phrases
 - Mean duration time per partner is nearly exact 1.0s
- Number of meaningful utterances (interactions) per partner (except initial / final phrases)
 - Average: 4 utterances per partner

Conversational Aspects

Duration of meaningful utterances (35 ... 60s calls)

Mean Duration Time of meaningful utterances is 5.4 s

Conversational Aspects

Occurrences of Double Talk

- Double talk is mostly occurred by short confirmation phrases or requests (mean duration time: 0.6s)
- Short confirmations or requests are more typical in case of longer utterances of the partner
- In case of an utterance duration between 4 ... 6s the probability of a short confirmation or request by the partner is approx. 60%
- The double talk ratio is between 5 ... 10 % typically

Modelling Conversations

How to model conversations?

- Initial phrases for convergence measurements
- Alternating transmission of 5s speech samples
- No consideration of final phrases
- Double talk is occurring at different points in the test sample

Modelling Conversations

Open issues

- 5 s samples are in conflict with draft P.862.2 Compromise in Call Length?
- What's about background noise?
- How to deal with the received double talk?
- How to score 'Call Quality'? More than simple average.
- What's about other dimensions
 Signal delay (e.g. in VideoCalls ≥ 300ms, Mobile-to-PSTN ≈ 100ms)
 Echo Cancelling Performance

Modelling Conversations

Compromise for narrow-band telephony?

- Usage of 6...8s samples as recommended in P.862.2 number of interactions remains four
- Optional insertion of background noise
 - No noise for ideal clean connection
 - Continuous noise at one side (typical for mobile-to-PSTN calls)
 - Continuous noise at both sides (typical for mobile-to-mobile calls)

Future Applications

Wideband Telephony (assumptions)

- Structure will remain unchanged
- Call duration might be increasing at all since people will become more familiar with cellular phones
- Increasing of background noise caused by `un-restricted' usage of mobile phones

Video Telephony (assumptions)

- Call duration might be increasing since high ratio of business calls
- Increasing of background noise caused by hands-free application (camera is in front of the user)

